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ABSTRACT

We show that long run consumption risk models imply that the covariance

matrix of the logarithm of price to dividend (P/D) ratios of stocks has a strict

factor structure. Factor analysis of the P/D ratios of 25 portfolios formed by

sorting stocks based on their size and book to market ratio during the 1943 to 2008

reveals two significant factors. Consistent with theory, these factors predict growth

in US aggregate consumption & dividends and consumption growth volatility, and

explain the cross section of average excess returns on portfolios based on size,

book/market, long term reversal, short term reversal, and earnings to price ratios.
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Recent research in asset pricing has focused on models of dynamic economies in or-

der to provide a better understanding of the underlying economic forces behind various

empirical regularities observed in financial markets. Table (I) summarizes three of the

empirical regularities that have received attention: the high historical average risk pre-

mium on corporate equities, large cross sectional variation in historical average returns

across various asset classes, and low risk free rate.

Table I
Summary of historical returns on various stock portfolios

Descriptive statistics of the real continuously compounded returns and real divi-
dend growth rates of ten assets over the period 1950-2008. The all stock index is
the value weighted index of all stocks on the NYSE, NASDAQ and AMEX, and
the data are from CRSP. Definitions of growth, value, small cap, large cap, small
growth, small value, large growth and large value stocks are provided in Section
IV. Standard deviations are computed using annual data, and nominal returns are
deflated by the inflation rate as measured by the CPI to get the corresponding
real returns. βASI is the beta of the asset with respect to the all stock index.

Returns Div. growth rate
βASIMean (%) Std. Dev. (%) Mean (%) Std. Dev. (%)

Risk free rate 1.20 2.3
All Stock Index (US) 6.11 18.0 1.51 5.9 1.00
Growth stocks (B1) 4.65 21.0 0.49 15.5 1.09
Value stocks (B10) 9.49 24.0 4.77 21.3 1.03
Small stocks (S1) 7.42 27.5 4.16 15.1 1.08
Large stocks (S10) 5.71 19.5 0.96 6.6 0.94
Small growth (FF1) 4.10 25.9 -0.98 19.3 1.31
Small value (FF3) 11.17 22.4 6.51 15.6 1.02
Large growth (FF4) 5.61 18.5 1.05 10.1 1.03
Large value (FF6) 8.60 20.3 3.04 11.3 0.93

In general, an asset with lower systematic risk, i.e., an asset with a larger fraction of

its payoff occurring during bad economic times, will be more valuable and thus earn a

lower return on average. An asset pricing model takes a stand on how to classify time

periods into good and bad ones. In a static one period economy good times will corre-
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spond to periods of higher consumption and higher aggregate wealth. Lucas (1978) and

Breeden (1979) showed that good times will also correspond to high aggregate consump-

tion growth in dynamic multi-period economies when there is a representative investor

with a standard separable utility function. Rubinstein (1976) showed that consumption

growth can be replaced by the aggregate wealth return when the representative investor

has a logarithmic utility function and the investment opportunity set is time-varying;

and when the representative investor has a constant relative risk aversion (CRRA) util-

ity function and the investment opportunity set is constant over time. Merton (1973)

developed the intertemporal capital asset pricing model (ICAPM) which holds when the

investment opportunity set (i.e., expected returns, variances/covariances, and higher mo-

ments of available assets) varies stochastically over time and the representative investor

has standard time separable utility function. In such an economy, Merton (1973) showed

that good economic times will depend not only on the return on the aggregate wealth

portfolio but also on state variables that characterize future investment opportunities.

Whereas an investor with standard time separable utility function will be indifferent

to the temporal resolution of uncertainty, stylized facts suggest that most investors pre-

fer earlier resolution of uncertainty. Kreps and Porteus (1978) developed an interesting

alternative to the standard time separable utility function that allows for such a prefer-

ence over the temporal resolution of uncertainty. Epstein and Zin (1989) and Weil (1990)

derived expressions that help classify the states of the economy based on the value of

security payoffs in those states for a specific parametric class of the Kreps and Porteus

(1978) utility functions. In particular, they showed that for classifying economic times

as good or bad, it is necessary to know the growth rate in aggregate consumption as

well as the return on the aggregate wealth portfolio. Skiadas (2009) showed that these

variables are sufficient even when investor preferences belong to the more general scale

invariant Kreps-Porteus class.
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Campbell (1993) showed that Merton (1973)’s ICAPM continues to approximately

hold even when the utility function of the marginal investor belongs to the Epstein

and Zin (1989) class provided the economy is homoskedastic. In particular, he showed

that the return on the aggregate wealth portfolio together with state variables that

help forecast future returns on the aggregate wealth portfolio are sufficient to classify

the economy into relatively good and bad times. Bergman (1985) derived related results

when the representative investor’s utility function is inter-temporally dependent through

habit.

Roll (1977) pointed out the difficulties associated with measuring the return on the

aggregate wealth portfolio. Campbell (1996) and Jagannathan and Wang (1996) further

argued that it is important to account for the return on human capital when measuring

the return on the aggregate wealth portfolio. The linear factor pricing model of Ross

(1976) avoids the need to measure the return on the aggregate wealth portfolio but can

only price assets whose returns have a linear factor structure. Bansal and Yaron (2004)

addressed this issue by showing that, under suitable assumptions it is possible to replace

current and future returns on the aggregate wealth portfolio by aggregate consumption

growth and changes in its future means and variances, by using the methodology of

Campbell (1993).

Bansal and Yaron (2004) further showed that their model for classifying economic

times into relatively good and bad ones is consistent with a wide variety of asset market

facts. While the Bansal and Yaron (2004) model has received wide attention in the liter-

ature, it has a major shortcoming. Since even small shocks to consumption can be highly

economically significant provided they are sufficiently persistent, precise measurement of

critical model parameters is necessary for the empirical validation of the model, and this

is not feasible given the limited length of time for which consumption data is available.1

Bansal and Yaron (2004) therefore rely on suitably calibrated parameter values to make

1Croce, Lettau, and Ludvigson (2007) show that precise measurements may be difficult even with
an infinite amount of consumption data.
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their arguments. The downside, as pointed out by Constantinides and Ghosh (2008)

and others, is that the validity of the arguments in Bansal and Yaron (2004) depend

on parameter values that cannot be estimated precisely enough to change the views of

those with reasonable and sufficiently strong priors. Because of that their findings have

been the subject of much debate.

In this paper we use a method for evaluating the empirical support for the Bansal

and Yaron (2004) model that overcomes this shortcoming. In particular we show that

when a general version of the Bansal and Yaron (2004) model holds, the factors that

determine the stochastic process for aggregate consumption can be estimated by factor

analysis of the log P/D ratios of a collection of stocks. The advantage of this approach

is that (a) we do not have to measure consumption or market wealth and in addition,

(b) not all investors need to be at the margin. This is in contrast with the methods

used by Bansal, Yaron, and Kiku (2007), Constantinides and Ghosh (2008), Ferson,

Nallareddy, and Xie (2009) and others who make use of the stock market log P/D ratio

and the real risk free rate for this purpose. The use of several log P/D ratios instead

of these quantities possesses two significant advantages. The first advantage is that we

do not need a long time series of observations of the real risk free rate. We show, in an

appendix, that this is a significant advantage because the probability of rejecting the

Bansal and Yaron (2004) model is high, even when it is the correct one, when realistic

measurement errors in the real risk free rate and consumption growth are taken into

account. The second advantage is that this methodology allows for more underlying

factors than those considered by Bansal and Yaron (2004). This is because we do not

require the number of factors to be specified a priori, and determine that number from

data. Our use of factors is thus in the spirit of the stand taken by Roll and Ross (1980).

Using our approach we find empirical support for the Bansal and Yaron (2004) view

that modeling long run risks in the presence of preference for temporal resolution of

uncertainty may be necessary to explain the cross section of asset returns in the following
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sense: the factors that help explain the cross section of returns on a variety of stock

portfolios are also helpful in forecasting changes in future consumption and dividend

growth as well as consumption growth volatility.2,3 These conclusions are robust to the

recent critique of factor models by Kleibergen (2010).

Our results also provide another possible explanation for the results of Jagannathan

and Wang (2007) and Jagannathan, Marakani, Takehara, and Wang (2011) who find

that growth in consumption from the final quarter of a tax year (Q4 in the US) to the

next (i.e. Q4 of the next year) explains the cross section of stock returns across the same

period while the growth in annual consumption does not. Jagannathan and Wang (2007)

and Jagannathan, Marakani, Takehara, and Wang (2011) argue that this is probably due

to the existence of a large section of investors who only trade at the end of the tax year.

We however find, in addition, that the Q4-Q4 consumption growth that they use may

also be serving as a proxy for the log P/D factor innovations since the correlation of

consumption growth with these factor innovations is much higher when consumption

growth is measured from the last quarter of one tax year to the next. We support this

argument by showing that the log P/D factor innovations drive out consumption growth

in the cross sectional regression.

The rest of the paper is organized as follows. Section I summarizes the related

literature. Section II introduces our version of the long run risk model which encompasses

the ones of Bansal and Yaron (2004), Bansal, Yaron, and Kiku (2007) and Zhou and

Zhu (2009). Section III discusses the implication of the model for the factor structure of

log P/D ratios and asset pricing. Section IV describes the data. Section V develops the

econometric specifications and discusses the empirical findings. Section VI concludes.

2Note that while temporal resolution of uncertainty may matter for some asset classes, it may not
matter for others.

3Note that, strictly speaking, the factors jointly predict consumption and dividend growth but only
track contemporaneous consumption growth volatility. However, for ease of exposition, we loosely refer
to tracking consumption growth volatility as predicting it. The reader will note that the empirical
analysis of the relation between the factors and consumption growth in this paper uses the tracking
rather than predictive property.
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I. Related Literature

The literature on consumption and factor based asset pricing models is vast and a review

of them is beyond the scope of this paper. We will therefore limit our discussion to papers

that are immediately relevant to our work.

In closely related work, Bansal, Yaron, and Kiku (2007), Constantinides and Ghosh

(2008) and Ferson, Nallareddy, and Xie (2009) assume that the number of factors is fixed

and equal to two and that the real risk-free rate and the P/D ratio of the aggregate stock

market portfolio are observed without error. In contrast, we allow for measurement errors

in P/D ratios that may arise due to temporary price fluctuations around the fundamental

value due to features of the economy that we do not model; and we do not require that

the real risk free rate to be observable. Since we rely on weaker restrictions imposed

by the model and do not require knowledge of the parameters of the consumption and

dividend processes as in Constantinides and Ghosh (2008), our findings, while consistent

with the Bansal and Yaron (2004) long run risk model, cannot rule out other competing

models.4

We believe that this is not a major shortcoming, since, as Constantinides and Ghosh

(2008) point out, the parameters cannot be precisely estimated with the limited amount

of available data. While constraining the feasible set of values for some of the parameters

can reduce the dimensionality of the problem and thus partially alleviate the issue,

it must be noted that these constrained values are generally arbitrary and not data

dependent. If these values are incorrectly chosen, spurious rejection of the underlying

model can occur, particularly since the stochastic discount factor in long run risk models

exhibits sensitive dependence on them. In this context, it should be noted that the chosen

constrained values of the parameters differ across studies. For example, the stochastic

discount factor for the Bansal and Yaron (2004) model derived by Constantinides and

4Although Bansal, Yaron, and Kiku (2007) take into account the dependence of the market prices of
risk on model parameters, they do not impose those restrictions when estimating the pricing relation.
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Ghosh (2008) does not extend to the parametrization used by Bansal, Yaron, and Kiku

(2007). This is because Bansal and Yaron (2004) and Constantinides and Ghosh (2008)

set the parameter governing the correlation between the innovations in the consumption

and dividend growths to zero while Bansal, Yaron, and Kiku (2007) do not. Ferson,

Nallareddy, and Xie (2009) also take a position similar to ours in this regard as their

approach also does not require estimating the parameters describing the consumption

and dividend processes. However, they make a different set of assumptions which we do

not; they assume that the real risk free rate is observed without error.

An alternative long run risk formulation which we do not explore in this paper is due

to Hansen, Heaton, and Li (2008).5 Hansen, Heaton, and Li (2008) show that the value

premium, but not the equity premium, can be explained using this formulation and that

a relatively high risk aversion value of around 30 is required for this purpose.6 Malloy,

Moskowitz, and Vissing-Jørgensen (2009) show that a closely related formulation is

capable of explaining both the equity and value premia when stockholder consumption

is used and that a relatively low relative risk aversion value of about 15 is sufficient

for this purpose. In addition, they show that the study of Parker and Julliard (2005),

whose results were originally explained on the basis of consumption adjustment costs and

measurement error in consumption data, can also be cast into this framework. Despite

the impressive results obtained using this approach, we do not explore it further because

it does not easily accommodate stochastic volatility which, as shown by the studies of

Bansal and Yaron (2004), Boguth and Kuehn (2008), Zhou and Zhu (2009) and Beeler

and Campbell (2009), plays a crucial role in pricing assets when the temporal resolution

of uncertainty matters.

5In Hansen, Heaton, and Li (2008), unlike Bansal and Yaron (2004), shocks to consumption growth
need not be persistent. This is a plus since Malloy, Moskowitz, and Vissing-Jørgensen (2009) find that
consumption growth of stock holders, is much less persistent than aggregate consumption growth.

6If aggregate rather than per capita consumption is used, as in Hansen, Heaton, and Li (2008), the
risk aversion required is only about 20. It is, however, standard to use per capita consumption in the
literature as pointed out by Marakani (2009).
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An alternative method of studying Epstein-Zin preferences has been pioneered by

Chen, Favilukis, and Ludvigson (2007) who do not impose any restrictions such as the

long run risk model in their estimations. They are able to do this by approximating the

continuation utility, which otherwise requires additional assumptions to estimate, with

the use of splines. They find that Epstein-Zin preferences, with the use of stockholder

consumption, is able to explain the cross-section of stock returns with a modest risk

aversion of 17. While interesting, we think that the imposition of the long run risk

model adds value as intuition suggests that agents are worried about the long term

future and that taking this prior into account is important.

Our study is also related to the consumption-cashflow based studies such as the ones

by Bansal, Dittmar, and Lundblad (2005), Bansal, Dittmar, and Kiku (2009), Lettau

and Wachter (2007), Da (2009) and others but goes beyond them in adding stochastic

volatility.

Yang (2011) is another related study which analyzes the long run risk of durable

consumption. In contrast, we analyze long run risk with the more traditional measure

of consumption which only considers non-durables and services.

II. The Long Run Risk Model

We consider the following long run risk model which accommodates the specifications

proposed by Bansal and Yaron (2004), Bansal, Yaron, and Kiku (2007) and Zhou and

Zhu (2009) as special cases.7 Let c, Xi, 1 ≤ i ≤ n and Vj, 1 ≤ j ≤ m be the log

consumption process, n processes that determine it’s conditional growth rate and m

processes that determine the volatility of it’s conditional growth rate respectively. Let

dl, l ≤ 1 ≤ L be the log dividend processes of L portfolios (in general, the lower case

7Note that the volatility process has to be modified to an Ornstein-Uhlenbeck one to accommodate
the first two specifications. This modification does not affect any of the fundamental theoretical results
or empirical analysis.
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variables correspond to the logarithm of the upper case variables). We assume that these

quantities follow the processes

ct+∆t =ct +

(
µ+

n∑
i=1

Xi,t

)
∆t+

√√√√ m∑
j=1

δ2
c,jVj,t (Wt+∆t −Wt)

−
m∑
k=1

ϕw,k
√
Vk,t (Zk,t+∆t − Zk,t)

(1)

Xi,t+∆t =Xi,t(1− αi∆t) + ϕi,x

√√√√ m∑
j=1

δ2
x,i,jVj,t (Yi,t+∆t − Yi,t), 1 ≤ i ≤ n (2)

Vi,t+∆t =Vi,t − κi(Vi,t − V̄i)∆t+ σi
√
Vi,t (Zi,t+∆t − Zi,t), 1 ≤ i ≤ m (3)

dl,t+∆t = dl,t +

(
µl +

n∑
i=1

φl,iXi,t

)
∆t

+ πl,d

(
∆ct+∆t −

(
µ+

n∑
i=1

Xi,t

)
∆t

)

+
n∑
i=1

πi,l,x(Xi,t+∆t −Xi,t(1− αi∆t))

+
m∑
j=1

πj,l,wσj
√
Vj,t (Zj,t+∆t − Zj,t) +

√√√√ m∑
k=1

δ2
l,d,kVk,t (Bt+∆t −Bt)

(4)

where W , Yi, 1 ≤ i ≤ n, Zj, 1 ≤ j ≤ m and B are independent Wiener processes

and
∑m

i=1 δ
2
c,i =

∑m
j=1 δ

2
x,i,j =

∑m
k=1 δ

2
l,d,k = 1 (as pointed out by Zhou and Zhu (2009),

these variables are necessary to ensure that the market volatility is decoupled from

the consumption growth volatility as is the case in the data). The basic time interval

of the process is assumed to be the same as that for which consumption is observed.

This ensures that the stochastic discount factor can be related to the innovations in the

processes c, X and V . If the basic time interval of the process is smaller than that for

which consumption is observed, time aggregation effects prevent the calculation of the
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stochastic discount factor as shown by Bansal, Yaron, and Kiku (2007).8 We note that

at least some of the αi and νi must be small for the risks to be long lived and therefore

carry a high price.

In the above equations, consumption is defined as a rate rather than per period so

that consumption from time t to t+∆t is Ct+∆t∆t and log consumption from t to t+∆t

is ct+∆t + log ∆t. While this generally makes no difference as the log consumption is

just offset by a constant, it ensures that the continuous time limit exists and (as we

show in appendix A) also makes it easy to obtain it. It further shows that the solution

method of Bansal and Yaron (2004) is general enough to apply to continuous time

models such as the one in Zhou and Zhu (2009) and that the less general continuous

time methods are not required to solve such long run risk models. One consequence of

this definition is that the log-linearization constants depend on ∆t. This is due to the

fact that consumption and dividends are flow variables whose magnitude depends on the

time interval (the shorter the time interval, the smaller the consumption and dividend).

This fact implies that the log-linearization constants, which are functions of the average

wealth to consumption or price to dividend ratio, are inversely related to the time scale.

This explains the dependence of these log-linearization constants, and hence the market

prices of risk, on the time unit chosen in the formulae below.

This long run risk process, when written in continuous time, incorporates the one

proposed by Zhou and Zhu (2009) as a special case (specifically with n = 1, m = 2

and ϕw,i = 0, 1 ≤ i ≤ m). When the volatility process (3) is modified to an Ornstein-

Uhlenbeck one plus a constant by modifying the second term to σi,w∆Zi,t+1 and the final

term in (1) to −
∑m

k=1 ϕw,k(Zk,t+∆t − Zk,t), it incorporates the ones proposed by Bansal

and Yaron (2004) and Bansal, Yaron, and Kiku (2007) as special cases (specifically

with n = 1, m = 1, ϕw,i = 0, 1 ≤ i ≤ m, πi,l,x = 0, 1 ≤ i ≤ n, 1 ≤ l ≤ L and

πi,l,w = 0, 1 ≤ i ≤ m, 1 ≤ l ≤ L).

8It must be noted that, for many models, reasonable approximations can be often made even in the
presence of time aggregation.
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Consumers in the model have Epstein-Zin preferences (Epstein and Zin 1989)

Ut = ((1− δ)C
1−γ
θ

t + δEt[U
1−γ
t+1 ]

1
θ )

θ
1−γ (5)

As noted in Bansal and Yaron (2004), we need γ > 1/ψ to generate a positive equity

risk premium as expected dividend growth is positively related to expected consumption

growth (as noted by Bansal and Yaron (2004), Bansal, Yaron, and Kiku (2007), Bansal,

Dittmar, and Lundblad (2005), Bansal, Dittmar, and Kiku (2009) and others). This

implies that they prefer early resolution of uncertainty and that shocks to expected

consumption growth carry a positive price of risk (as pointed out by Kaltenbrunner and

Lochstoer (2010)) which is high if the expected consumption growth is persistent. This

high price of risk results in a high equity premium and low risk-free rate.

III. Factor structure of log P/D ratios

In appendix A, we show, using the approach of Bansal and Yaron (2004) and Bansal,

Yaron, and Kiku (2007), that this long run risk model implies that

log

(
Pl,t
Dl,t

)
= pl,t − dl,t = A0,l +

n∑
i=1

A1,l,iXi,t +
m∑
j=1

A2,l,jVj,t (6)

where Pl,t is the price of portfolio l, A1,l,i =
(φl,i−1/ψ)∆t

1−ν1,l(1−αi∆t)
, 1 ≤ i ≤ n (ν1,l being a

log-linearization constant which is endogenously determined in the model) and where

the expressions for A2,l,j, 1 ≤ j ≤ m are derived in appendix A. This generalizes the

equivalent results by Bansal and Yaron (2004), Bansal, Yaron, and Kiku (2007) and

Zhou and Zhu (2009) to the situation when there are multiple state variables describing

predictable consumption growth and consumption growth volatility.
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Since the real risk-free rate can be viewed as a special type of dividend-price ratio,

it also follows that

rf,t = A0,f +
n∑
i=1

A1,f,iXi,t +
m∑
j=1

A2,f,jVj,t (7)

where A1,f,i = 1/ψ.

We show that the log stochastic discount factor for this model is given by

mt+∆t =∆t

(
Γ0 +

n∑
i=1

Γ1,iXi,t +
m∑
j=1

Γ2,jVj,t

)

− αc

√√√√ m∑
j=1

δ2
c,jVj,t(Wt+∆t −Wt)

−
n∑
i=1

αx,i

√√√√ m∑
j=1

δ2
x,i,jVj,t(Yi,t+∆t − Yi,t)

−
m∑
j=1

αv,j
√
Vj,t(Zj,t+∆t − Zj,t)

(8)

where Γ1,i = −1/ψ, αc = γ and αx,i = γ−1/ψ
1−ν1(1−αi∆t) .

9 The expression for αv,j is compli-

cated and does not directly concern us here, but we note that it was shown by Bansal

and Yaron (2004) that αv,j < 0 if γ − 1/ψ > 0 and ψ > 1.

The relatively simple form of αx,i implies that it can used together with a reasonable

approximation for 1 − ν1 = exp(c−w)∆t

1+exp(c−w)∆t
≈ exp(c− w)∆t to estimate γ − 1/ψ once a

component Xi is identified. The estimation of ν1, which can at best be done heuristically,

is a cost that has to be paid when the parameters are not explicitly specified. It must

be cautioned that this estimate is likely to be imprecise due to it’s indirect nature but

it is still useful in that it allows to relate the empirical results back to the underlying

preferences.

9Note that the value of αx,i depends on ∆t but the risk premium does not. αx,i varies inversely with
∆t as 1 − ν1 is proportional to ∆t. Since the risk premium due to this risk is given by the product of
αx,i and the covariance between the return and the innovation to Xi which is proportional to ∆t, the
inverse relationship between αx,i and ∆t implies that the risk premium is independent of it.
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In the case of no measurement error, (6) can be inverted to express the state variables

(Xi, Vj) as a linear combinations of log P/D ratios. This enables the expression of the

log stochastic discount factor as

mt+∆t = ∆t

(
Ξ̃0 +

m+n∑
i=1

Ξ̃1,iFi,t

)
− αc(ct+∆t − ct)−

m+n∑
i=1

αq,iIFi,t+∆t (9)

where Fi and IFi, 1 ≤ i ≤ n+m are the n+m principal components of the log P/D ratios

(or, equivalently, any linear combination of n+m log P/D ratios) and their innovations

respectively.

(6) implies that the log P/D ratios of assets follow a strict factor structure (up to

the loglinear approximation) in the model.10 Since log P/D ratios are not exact linear

combinations of a small number of factors in the data, we use a slightly modified relation

in our empirical work. This relation is

log

(
Pl,t
Dl,t

)
= pl,t − dl,t = A0,l +

n∑
i=1

A1,l,iXi,t +
m∑
j=1

A2,l,jVj,t + εl,t (10)

where εl,t ∼ N(0, Ve) are i.i.d. εl,t can be thought of as deviations that arise due to

market imperfections such as illiquidity or due to the existence of incompletely diversified

idiosyncratic factors. In section V, we show that, given the assumed error structure,

principal component analysis (or singular value decomposition) can be used to estimate

the linear subspace that spans the n+m factors once n+m is specified and that statistical

tests suggested in the literature can be used to estimate n+m from the data.

This differs from the methodology used by Bansal, Yaron, and Kiku (2007) and

Ferson, Nallareddy, and Xie (2009) in estimating the linear subspace of the factors with

the use of several log P/D ratios rather than the projection of the realized long term

consumption growth and its volatility on the log market P/D ratio and the real risk free

10The reader must note that these factors are different though related to the pricing factors discussed
below. This similar terminology for the two different types of quantities is standard but unfortunate.
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rate. We show in the appendix B, by using Monte Carlo simulations of the long run

risk model, that our methodology produces much fewer spurious rejections of the model

when reasonable measurement errors in consumption growth and the real risk free rate

are taken into account.

The standard asset pricing relation

Et[exp(mt+∆t + ri,t+∆t)] = 1 (11)

together with (9) implies a nonlinear pricing relationship involving the log P/D factors,

their innovations and returns which we investigate using GMM in the empirical section

of this paper. We also approximate this nonlinear relationship by a linear beta pricing

one and examine it in the empirical study. We do so because such linear beta pricing

models are well studied in the literature and are easier to intuitively understand (two

studies that take this approach in the context of long run risk models are those of Malloy,

Moskowitz, and Vissing-Jørgensen (2009) and Ferson, Nallareddy, and Xie (2009)).

Note that the model we have specified implies that mt+∆t and ri,t+∆t are conditionally

normally distributed. Hence, (11) can be written as

logEt[exp(mt+∆t + ri,t+∆t)] = Et[mt+∆t + ri,t+∆t] +
1

2
Vart[mt+∆t + ri,t+∆t] = 0

or

Et[ri,t+∆t] +
1

2
Vart[ri,t+∆t] + Et[mt+∆t] +

1

2
Vart[mt+∆t] + Covt(mt+∆t, ri,t+∆t) = 0 (12)

Since

rf,t = − logEt[exp(mt+∆t)] = −Et[mt+∆t]−
1

2
Vart[mt+∆t] (13)
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and Vart[ri,t+∆t] = Vart[ri,t+∆t − rf,t] (as rf,t ∈ Ft), (12) is equivalent to

Et[ri,t+∆t − rf,t] +
1

2
Vart[ri,t+∆t − rf,t] + Covt(mt+∆t, ri,t+∆t − rf,t) = 0 (14)

Taking the unconditional expectation of the above equation and combining it with the

identity Var[X] = E[Vart[X]] + Var[Et[X]] (with X = ri,t+∆t − rf,t) and the identity

E[Covt(Xt+∆t, Yt+∆t)] = Cov(Xt+∆t − Et[Xt+∆t], Yt+∆t) (15)

with X = m,Y = ri − rf , we obtain the unconditional relationship11

E[ri,t+∆t − rf,t] +
1

2
Var[ri,t+∆t − rf,t]−

1

2
Var[Et[ri,t+∆t − rf,t]]+

Cov[mt+∆t − Et[mt+∆t], ri,t+∆t − rf,t] = 0

(16)

Substituting out mt+∆t using (9) gives us

E[ri,t+∆t − rf,t] +
1

2
Var[ri,t+∆t − rf,t]−

1

2
Var[Et[ri,t+∆t − rf,t]]

= β∆cλ∆c +
n+m∑
j=1

βIFjλIFj

(17)

The above equation cannot be directly used as a standard linear beta pricing relationship

due to the presence of the third term in it. We will therefore have to account for that

term in order to obtain a usable pricing relationship. For this purpose, we use the

following approach. We note that Et[ri,t+∆t − rf,t] must be a function of the X and V

state variables since they completely describe the state of the economy in our model.

Hence, we allow Var[Et[ri,t+∆t − rf,t]] to be an affine function of both X and V , or

equivalently, an affine function of the log P/D factors F , in our empirical specification.

11Malloy, Moskowitz, and Vissing-Jørgensen (2009) work with the relationship E[ri,t+∆t − rf,t] +
1
2Var[ri,t+∆t − rf,t −Et[ri,t+∆t − rf,t]] + Cov[mt+∆t −Et[mt+∆t], ri,t+∆t − rf,t] = 0 which follows from
(14) as Var[ri,t+∆t − rf,t − Et[ri,t+∆t − rf,t]] = Vart[ri,t+∆t − rf,t]. This approach requires a stand on
the set of variables that determine the expected excess returns of the various assets as well as on the
functional form of the relation between the variables and these expected excess returns.
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We then make use of the fact that the innovations to ri,t+∆t − rf,t are orthogonal to

Et[ri,t+∆t − rf,t] to write

Var[Et[ri,t+∆t − rf,t]] = Cov(Et[ri,t+∆t − rf,t], ri,t+∆t − rf,t) (18)

and so express Var[Et[ri,t+∆t − rf,t]] in terms of the covariance between the returns and

the log P/D factors F so that it can be absorbed into the linear beta pricing relation.

This then leads to the usable linear beta pricing relation12

E[ri,t+∆t − rf,t] +
1

2
Var[ri,t+∆t − rf,t] ≈ β∆cλ∆c +

n+m∑
j=1

βFjλFj +
n+m∑
j=1

βIFjλIFj (19)

An alternative approach13 is to set Var[Et[ri,t+∆t − rf,t]] to zero. This gives the

following approximate unconditional relationship

E[ri,t+∆t − rf,t] +
1

2
Var[ri,t+∆t − rf,t] + Cov[mt+∆t − Et[mt+∆t], ri,t+∆t − rf,t] ≈ 0 (20)

Substituting mt+∆t using (9) gives us a linear beta pricing relationship where the factors

are contemporaneous consumption growth and the innovations to the identified principal

components of the log P/D ratios14

E[ri,t+∆t − rf,t] +
1

2
Var[ri,t+∆t − rf,t] ≈ β∆cλ∆c +

n+m∑
j=1

βIFjλIFj (21)

where IFi stand for the innovations to the principal components or factors of the log

P/D ratios.

12Note that the expression mt+∆t − Et[mt+∆t] involves only the innovations to the log P/D ratios.
13followed by Ferson, Nallareddy, and Xie (2009)
14Ferson, Nallareddy, and Xie (2009) do not use log P/D factors in their analysis so their linear beta

pricing relationship is different from (21) in that respect.
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This relation, which is a restricted form of the relation (19), makes the approximation

that time varying expected returns are unimportant. Hence, we can use the relation

between the results of the cross sectional regressions performed on the basis of (19) and

(21) to assess the importance of time varying expected returns for the set of assets used

in the study.

We ignore the contemporaneous consumption growth factor in the empirical analysis

since it is well-known that it does not explain the cross section of equity returns (such

an approach is also used, for e.g., by Malloy, Moskowitz, and Vissing-Jørgensen (2009)).

We have verified that it’s inclusion does not materially affect any of the results.15

A. Relation to Standard Linear Factor Models

We note from the standard loglinear approximation of Campbell and Shiller (1988) that

innovations of the log P/D ratios are similar to excess returns minus dividend growth.

Hence, the methodology involved here closely parallels the standard factor analysis and

principal component analysis methods of Connor and Korajczyk (1986), Lehmann and

Modest (1988), Lehmann and Modest (2005) and Connor and Korajczyk (2009) but

differs in the way the factors are constructed. While standard factor analysis constructs

factors from the returns themselves, this methodology pays more attention to returns

that are not explained by contemporaneous dividend growth, or in other words, to the

more interesting non-trivial part of returns. When the lagged principal components of

the log P/D ratios are included as factors as in the full linear beta pricing relationship,

it extends factor analysis to include important but slow moving predictable components

of excess returns and consumption and dividend growth which are at the heart of long

run risk models. Thus, we see that long run risk models can be related to factor models

in the literature with the factors including both the innovations of the long run risk

15These results are available upon request from the authors.
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components (which are analogous to returns) and the components themselves (which

are analogous to the price dividend ratios).

We emphasize that the above relation does not imply that the excess return factor

structure is the same as that of the log P/D ratios. This is because of the presence

of a factor structure in the dividend growths of various portfolios. Hence, there is no

contradiction between our finding of two factors in the log P/D ratios of the 25 Fama-

French portfolios and the well-known result that the excess returns of these portfolios

exhibit a three factor structure.

B. P/D or P/E ratios?16

A natural question is whether the use of price-earnings (P/E) ratios is preferable to the

use of P/D ratios in the empirical analysis. This question arises from the observation that

a number of firms do not pay cash dividends and for such firms earnings are generally

viewed as a better measure. However, this is not an issue for us as we work with portfolios

of stocks.

The primary theoretical reason for our preference for using P/D ratios is that the

asset pricing relations we derived earlier makes use of the fact that the stock price is

the expected discounted value of future dividends. Hence the asset pricing equations

we derived will not hold if dividends are replaced by earnings unless the “true” payout

ratio (i.e. the payout ratio using the unmeasured true dividends) of firms is unrelated to

the risk premium which, in long run risk models, is in general an affine function of the

underlying state variables (as shown by Bansal and Yaron (2004), it is an affine function

of only the consumption growth volatility in their specification and it is easy to show

in a similar manner that this is the case for our specification as well). As noted in the

empirical section, we do find that the payout ratio is strongly related to the consumption

16We thank seminar participants at INSEAD for bringing up this interesting and important question.
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growth volatility and this implies that it is inappropriate to use P/E ratios instead of

P/D ratios in our analysis.

Another reason for using P/D instead of P/E ratios is that earnings are regularly

revised and that these revisions are strongly related to asset prices as documented by

Da and Warachka (2009). The extent of the predictability of these revisions is unclear.

Since the information structure of the economy being considered here implies that agents

must use estimates of the final revised earnings to compute the P/E ratios, the validity

of a test of the model using them (even ignoring the dividend smoothing issue pointed

out above) will depend on the validity of the model used for the predictable earnings

revisions.

IV. Data

In this section, we describe the data used in this paper. Consumption data is obtained

from the National Income and Product Accounts (NIPA) tables available at the BEA web

site. Real annual per capita consumption is defined to be the nominal aggregate annual

consumption of nondurables and services divided by the NIPA estimate of the mid-

year population and deflated by the implicit personal consumption deflator.17 Annual

consumption growth is defined to be the first difference of the logarithm of this series.

Quarterly seasonally adjusted consumption data is also obtained from NIPA and it’s

growth is defined in an analogous manner.

The proxy for the nominal risk-free rate is the Fama 3 month T-bill rate obtained

from CRSP. It is converted to three proxies of the real risk free rate using the realized,

past and expected inflation as measured by the future CPI growth, lagged CPI growth

and expected growth in the CPI (as discussed in the relevant section of this paper). The

17Since we make use of data expressed in terms of chained dollars, we use a Tornqvist type index
(Whelan 2000) to construct the implicit consumption deflator.
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CPI data for the calculation of the first two measures is obtained from CRSP while the

expected CPI growth data is obtained from the Federal Reserve Bank of Philadelphia.

The stock market proxy (used to determine the relationship between the factors and

future dividend growth and expected returns) is defined as the CRSP value-weighted

index of all stocks listed on the NYSE, AMEX and NASDAQ. The construction of

portfolios based on size and book-to-market ratios is as in (Fama and French 1993) and

(Fama and French 1996). Data on the 6 (2 × 3) and 25 (5 × 5) portfolios sorted on

the basis of both these characteristics as well as the two sets of ten portfolios (deciles)

sorted on either characteristic is obtained from Ken French’s web site. In this paper,

the growth and value portfolios respectively denote the bottom and top book to market

ratio deciles.

For testing the asset pricing relationships with portfolios other than the ones used

to estimate the factors (we call this out of sample testing), we use three sets of ten

portfolios each formed on the basis of long term reversal, short term reversal and the

earnings to price (E/P) ratio. The long term reversal portfolios are formed monthly on

the basis of stock’s return over the past five years minus it’s return over the past year.

In other words, they are formed at time t− 1 (time being indexed by month) by sorting

stocks into ten portfolios according to their returns from t−61 to t−13. Similarly, short

term reversal portfolios are formed at time t − 1 by sorting stocks into ten portfolios

based on their return from t−2 to t−1. The E/P based portfolios are formed at the end

of June of year t by sorting stocks into ten portfolios (using NYSE breakpoints) on the

basis of their E/P ratios where earnings are earnings before extraordinary items during

fiscal year t − 1 and the price is the market capitalization at the end of December of

year t− 1. Data on these thirty portfolios is also obtained from Ken French’s web site.

Monthly dividends of these portfolios are calculated using the difference between

the returns of the corresponding dividend reinvested and non-reinvested portfolios. The

price-dividend ratios are then calculated by dividing the real price of the non-reinvested
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portfolio by the sum of the lagged twelve real monthly dividends. This procedure ac-

counts for the pronounced seasonality of the dividend series. The nominal prices and

dividends are deflated by the CPI to get these real prices and dividends. As pointed

by Van Binsbergen and Koijen (2010), the effect of assumptions regarding the handling

of dividends paid during the year on the price dividend ratios is negligible with the

correlation between the different measures being about 0.9999.

Real time consumption data is obtained from the web site of the Federal Reserve Bank

of St. Louis and is described by Croushore and Stark (2001). The real consumption

during a quarter is defined to be the sum of the real consumption of nondurables and

services during that quarter. The real consumption during a year is defined to be the sum

of the real consumptions during each quarter of that year. Real per capita consumption

during a period is defined to be the real consumption during that period divided by

the mid-period estimate of population. The real time annual per capita consumption

growth for year t is defined to be the difference between the logarithms of the real per

capita consumptions during years t and t − 1 respectively as calculated using data of

vintage Q1 of year t + 1. To provide an example, the data set of Q1 1976 vintage is

used to construct the real time annual per capita consumption growth for 1975. It is

constructed by adding the real nondurables and services consumptions of Q1-Q4 1974

and Q1-Q4 1975, dividing each of them by the mid-year estimates of the population,

and then taking the difference of the logarithms of the corresponding quantities.

V. Empirical Findings

A. Structural Break Implied by the Factors

Marakani (2009) documents strong evidence that the parameters of long run risk models

could not have been the same before and after 1942. Hence, we only consider the post
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1942 period in our analysis and assume that consumers are myopic and do not consider

the possibility of regime change in the model.18 We defer the examination of an extended

model where the consumers are aware of possible regime shifts to future research.19

B. Construction of the Principal Components and Their Inno-

vations

From (6), the problem of obtaining the factors of log P/D ratios is, for a fixed number of

factors n+m, equivalent to the problem of finding time series processes F n+m
i,t to solve

V (n+m) = min
Λ,Fn+m

1

NT

N∑
i=1

T∑
t=1

(
Xi,t − Λn+m

i F n+m
i,t

)2
(22)

where X is the matrix of demeaned log P/D ratios, N is the number of portfolios, T is

the length of the time series, F are the factors and Λ are the loadings of the individual

log P/D ratios on them (the superscript n + m keeps track of the number of assumed

factors). The equivalency of the two problems follows trivially from the assumption

that the error terms are i.i.d and Gaussian. Hence, this problem is the same as the

well studied standard factor analysis problem (of which Connor and Korajczyk (2009)

is an excellent review). The assumptions regarding the error terms are not crucial for

our results as they hold even if we perform the principal component analysis after first

scaling the log P/D ratios to make them each have unit variance or after first scaling

them each according to their residual variances. In other words, our results are robust

to the use of different specifications for the error term.

Hence, the factors can be calculated by singular value decomposition of the matrix

of de-meaned log P/D ratios. This is equivalent to the more usual method of using the

18The use of post-1945 or post-1950 data does not significantly change our results.
19In this context, we note that Bekaert and Engstrom (2010) have recently argued that habit formation

models are better able to incorporate the very different dynamics observed during and after the Great
Depression.

23



eigenvectors of the covariance matrix or directly solving (22), but is preferred because it

has greater numerical stability. The number of relevant factors k = m+n is determined

by using the information criterion

argmin
k

ICp2 ≡ argmin
k

(
log V (k) + 2k

(
N + T

NT

)
log min(N, T )

)
(23)

suggested by Bai and Ng (2008) and by Connor and Korajczyk (2009). This method

is known to be consistent when the number of quantities and the length of the time

series become large. As pointed out by Bai and Ng (2008), traditional methods usually

overestimate the number of factors that are present in the data.
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Figure 1
Information criterion as a function of the number of factors for the annual log
P/D ratios of the 25 Fama-French portfolios.

We carry out this procedure on the annual and quarterly log P/D ratios of the 25

Fama French portfolios from 1943 (to account for the structural break) and 1947 (since

quarterly consumption data is only available from this date) respectively. We find two

significant factors in both series (as well in the monthly series of log P/D ratios from
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Figure 2
Information criterion as a function of the number of factors for the quarterly log
P/D ratios of the 25 Fama-French portfolios.
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Figure 3
Variances explained by the first ten principal components of the annual log P/D
ratios of the 25 Fama-French portfolios.
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Scree plot of variances explained by the principal components of the

 log price dividend ratios of the 25 Fama−French portfolios (quarterly)
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Figure 4
Variances explained by the first ten principal components of the quarterly log P/D
ratios of the 25 Fama-French portfolios.

1947).20 We plot the information criterion as a function of the number of factors in

figures 1 and 2, and the variances explained by the principal components in figures 3

and 4 respectively.

Using the same procedure, we find two factors in the first differences of the quarterly

log P/D ratios of these portfolios. We also note that the plot of the variances explained

by their principal components in figure 5 unambiguously points to a two factor structure.

We tabulate the rotations that relate the annual and quarterly log P/D ratios of the

25 Fama-French portfolios to their first two principal components, denoted by F a,q
1,2 with

the superscript representing the frequency of observation and the subscript the principal

component, in table (II). We note that the estimated rotation matrices are essentially

independent of the measurement frequency and that most of the small differences in

20The date change from 1943 to 1947 makes only a minimal difference to the estimated factors and
the subsequent results remain largely unchanged even if the quarterly factors are estimated using data
from 1943.
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Table II
Rotation matrices that relate the log P/D ratios to their first two

principal components

The rotation matrices that relate the log annual and quarterly price dividend ratios
of the 25 Fama-French portfolios to their first and second principal components.
F a1 and F a2 represent the first and second principal components of the annual log
P/D ratios while F q1 and F q2 represent the first and second principal components
of the quarterly log P/D ratios.

Rotation matrix for F a
1

Growth Value
1 2 3 4 5

Small 1 0·356 0·267 0·206 0·194 0·169
2 0·354 0·244 0·198 0·168 0·135
3 0·314 0·210 0·176 0·152 0·135
4 0·234 0·176 0·154 0·125 0·100

Large 5 0·148 0·116 0·104 0·114 0·116

Rotation matrix for F a
2

Growth Value
1 2 3 4 5

Small 1 −0·458 −0·140 −0·082 0·028 0·104
2 −0·289 −0·055 0·089 0·194 0·211
3 −0·177 0·025 0·185 0·231 0·221
4 −0·064 0·091 0·170 0·302 0·243

Large 5 −0·005 0·077 0·186 0·275 0·315

Rotation matrix for F q
1

Growth Value
1 2 3 4 5

Small 1 0·359 0·268 0·204 0·195 0·175
2 0·348 0·244 0·198 0·170 0·143
3 0·309 0·210 0·177 0·152 0·140
4 0·229 0·176 0·154 0·127 0·106

Large 5 0·147 0·116 0·105 0·114 0·113

Rotation matrix for F q
2

Growth Value
1 2 3 4 5

Small 1 −0·506 −0·155 −0·080 0·019 0·066
2 −0·265 −0·046 0·092 0·191 0·168
3 −0·153 0·029 0·192 0·241 0·198
4 −0·041 0·099 0·168 0·298 0·211

Large 5 0·014 0·086 0·191 0·289 0·323
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Scree plot of variances explained by the principal components of the differences in

 log price dividend ratios of the 25 Fama−French portfolios
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Figure 5
Since a factor structure for the log P/D ratios also implies a similar factor structure
for the first differences in the log P/D ratios, we check that the first differences of
the log P/D ratios also exhibit a two factor structure in the data. We do so by
plotting the variances explained by the first ten principal components of the first
differences of the log P/D ratios of the 25 Fama-French portfolios and find that it
clearly supports the two factor structure hypothesis.

the two sets of rotation matrices are due to the change in the starting date for the

data used in their construction. Hence, where no fear of confusion arises, we ignore

the measurement frequency and denote the two principal components by F1 and F2

respectively. From the rotation matrices, we find that F1 loads positively on all the

portfolios and loads slightly more on the small stock portfolios. In contrast, F2 loads

positively on large and value stocks and negatively on growth and small stocks. We thus

expect F2 to be closely related to the cross sectional differences among the portfolios.

We estimate the innovations of the two identified principal components as the OLS

residuals obtained on regressing them on n lags of themselves, n being the smallest

value for which they are serially uncorrelated at the 10% level according to both the

Ljung-Box and Durbin-Watson tests. n is always found to be one for the annual data
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and sometimes two for the quarterly data. We denote these estimated innovations as

IF f
1 and IF f

2 with f = a, q representing the measurement frequency.

C. Principal Components & the Long Run Risk Factors

Since the Xi factors represent joint predictable components of consumption and div-

idend growth, a positive and significant coefficient should result on regressing future

consumption and dividend growth against these factors. Similarly, since the Vj factors

are components of the consumption growth volatility, regressing consumption growth

volatility against them should also lead to a positive and significant coefficient. Since

the principal component analysis only identifies affine transformations of the full set

of long run risk factors, we can, in general, expect to find that the principal compo-

nents will be related to both the Xi and Vj factors and that both regressions above

will lead to significant coefficients given that the long run risk model holds. However

we find that only the volatility regression generates a significant coefficient for the first

identified principal component F1 and that only the future consumption and dividend

growth regression generates a significant coefficient for the second identified principal

component F2. This implies that the first identified principal component is naturally

identifiable as an affine function of the only V factor and that the second identified

principal component is naturally identifiable as an affine function of the only X factor.

We now examine the volatility regression in some detail. In order to construct a

consumption volatility series, we estimate the innovations of quarterly consumption

growth εv,t as the OLS residuals obtained on regressing it on n lags of itself, n being the

smallest value for which they are uncorrelated at the 10% level according to both the
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Ljung-Box and Durbin-Watson tests. n is found to be three for this data series. Using

these estimated innovations, we estimate the consumption volatility series as

vnt = log
n∑
i=1

ε2v,bt+n/2−ic
n

(24)

This methodology is standard and has been used in the context of long run risk models

by Beeler and Campbell (2009).

The results of regressing v24
t , v

12
t and v6

t on F q
1 and F q

2 are summarized in table (III).

They show that F1 is very closely related to consumption growth volatility with the

R2 of the 24 quarter volatility regression being as high as 81%. Even the R2 for the 6

quarter volatility regression, where measurement error is likely to be high, is quite high

at 47%. Further, the fact that the coefficients of F1 in the various regressions are very

similar to each other (i.e. for volatilities estimated over several horizons) provides strong

evidence that the relation is robust. In contrast, there is no evidence at all that F2 is

related to consumption growth volatility. This result, when combined with the result,

detailed below, that F1 is unrelated to future consumption and dividend growth, leads

to the conclusion that F1 is an affine function of a V type factor. This conclusion follows

because F1 satisfies the conditions we have identified for such a factor : it is an affine

function of log P/D ratios, it tracks consumption growth volatility and does not predict

future consumption or dividend growth.

Before we go ahead to examine the consumption and dividend growth regressions, we

present evidence for our earlier assertion (during the discussion of the appropriateness

of using P/E ratios instead of P/D ratios) that the stock payout ratio is strongly related

to the consumption growth volatility factor which, in long run risk models, is affinely

related to the equity risk premium as shown by Bansal and Yaron (2004) and Bansal,

Yaron, and Kiku (2007). We first plot the overall market payout ratio in figure 6 (the

data used to calculate the ratio was obtained from NIPA) and note that it is not close to

constant as is required if P/E ratios are to be used instead of P/D ratios in the analysis.
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Table III
Regression of consumption growth volatility on the significant

principal components of the quarterly log P/D ratios

Result of regressing volatility as defined in (24) against F q1 and F q2 , the two signif-
icant principal components of the quarterly log P/D ratios. The standard errors
are Newey-West corrected with the number of lags required estimated using the
procedure in Newey and West (1994).

F q
1 F q

2 R2

24 quarter volatility −0.213∗∗∗ (0.027) 0.081 (0.094) 81.2%
12 quarter volatility −0.234∗∗∗ (0.052) 0.074 (0.190) 62.7%
6 quarter volatility −0.235∗∗∗ (0.062) 0.024 (0.209) 46.9%

Table IV
Regression of the payout ratio on the lagged principal components

Result of regressing the payout ratio on F a1 and F a2 , the two significant principal
components of the log P/D ratios. Note that since F a1 is negatively related to
consumption growth volatility, this implies a negative relationship between the
payout ratio and the latter. The standard errors are Newey-West corrected with
the number of lags determined by the procedure in Newey and West (1994)

Intercept Coefficient of F a
1 Coefficient of F a

2 R2

0.300 (0.005) 0.0216∗∗∗ (0.0028) -0.014 (0.012) 71.8%

The results of regressing the payout ratio on the observed factors are summarized in

table (IV). From it, we see that the payout ratio is strongly related to consumption

growth volatility and, therefore, in the context of the long run risk model, to the equity

risk premium. This relation implies that it is not possible to use P/E ratios as a proxy

for P/D ratios to test this model as the timing of realized cash flows is important within

it’s context.

We now examine the dividend and consumption growth regressions in detail. The

results of regressing annual real market dividend growth (i.e., growth of annual market

dividends deflated by the CPI) on the lagged values of F a
1 and F a

2 are summarized in

table (V). We find, from them, that F a
2 , but not F a

1 , predicts market dividend growth.

This predictive ability is weakly robust to lagging twice to account for time aggrega-
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Figure 6
Overall payout ratio in the economy from 1944 to 2008.

tion with the coefficient for F a
2 being significant at the 10% level.21 (It should also be

noted that time aggregation is generally not considered an issue with respect to dividend

growth.) While our results are robust to time aggregation of dividend growth along this

dimension, we acknowledge that such aggregation also leads to biases in our estimates

of the price dividend ratios since we calculate them, as is conventional in the literature,

using dividends aggregated on an annual basis in order to adjust for their pronounced

seasonality.22 However, we also note that time aggregation of dividend growth, in con-

trast to time aggregation of consumption growth, is generally not considered a significant

issue in the literature, that our model specification is annual rather than monthly and

that our results are robust to the use of either of the conventional assumptions regarding

the investment of dividends received during the year (the first being that such dividends

21It is interesting that F a
2 , which weights the value portfolios more heavily, predicts future market

dividend growth better than the log market P/D ratio (whose inability to predict dividend growth is
well known (Cochrane 2005)). We hypothesize that this is because value stocks have a low duration
which makes their P/D ratios depend more on dividend growth than on future expected excess returns.

22We thank Dana Kiku for bringing this to our attention.
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Table V
Regression of market dividend growth and real time consumption

growth on the lagged principal components

Results of regressing real annual market dividend growth (dm) and real time con-
sumption growth (cRT ) against lagged F a1 and F a2 , the two significant princi-
pal components of the annual log P/D ratios, and lagged log market P/D ratio
(log(P/D)m). The standard errors are Newey-West corrected with the number
of lags required estimated using the procedure in Newey and West (1994). The
regressions using the log market P/D ratio are for the same time period as for the
ones using F a1 and F a2 (1944-2008 for the 1 year dividend growth regressions and
1946-2008 for the 3 year dividend growth regressions).

Regression of market dividend growth on the lagged F a
1 and F a

2 , compared
with that on the lagged log market P/D ratio

(IPCD stands for the implicit personal consumption deflator)
F a

1,t F a
2,t log(P/D)m,t R2

∆dm,t+1 deflated by CPI
0.0004 (0.0031) 0.0317∗∗∗ (0.0079) 16.0%

0.003 (0.027) 0.0%
After 1 yr -0.0005 (0.0032) 0.0134∗ (0.0089) 2.9%

∆dm,t+1 deflated by IPCD
-0.0002 (0.0032) 0.0288∗∗∗ (0.0079) 13.3%

-0.002 (0.026) 0.0%
After 1 yr -0.0012 (0.0033) 0.0126∗ (0.0088) 2.9%

dm,t+3 − dm,t 0.0008 (0.0135) 0.0571∗∗ (0.0261) 11.6%
deflated by CPI 0.005 (0.107) 0.0%
dm,t+3 − dm,t -0.0012 (0.0132) 0.0543∗∗ (0.0247) 10.9%

deflated by IPCD -0.011 (0.103) 0.0%

Regression of real time annual consumption growth on lagged F a
1 and F a

2

F a
1,t F a

2,t R2

∆cRT
t+1 −2× 10−4(9× 10−4) 0.0068∗ (0.0037) 17.4%

∆cRT
t+2 −5× 10−4(7× 10−4) 0.0054∗∗ (0.0021) 9.8%

∆cRT
t+1 + ∆cRT

t+2 −5× 10−4(1.5× 10−3) 0.0123∗∗ (0.0050) 18.9%

are invested in nominal cash until the end of the year and the second being that they

are invested in the asset itself until the end of the year23).

23The convention used in the presented calculations is equivalent to the assumption that dividends
received during the year are consumed immediately and that the agent is completely indifferent to the
timings of these dividends during the year.
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The results of regressing annual real time consumption growth against the lagged

values of F a
1 and F a

2 are also summarized in table (V). We find, from them, that F a
2

also predicts real time consumption growth as defined in the data section and that this

predictive ability is robust to lagging twice to account for time aggregation. This is in

accordance with the long run risk hypothesis that dividend and consumption growth

share the same persistent component(s) X.24 From the results in table (V), we conclude

that F2 can be identified as an affine function of a X type factor as it satisfies the

essential properties of such factors : it is an affine function of log P/D ratios, predicts

dividend and consumption growth but not consumption growth volatility.

We find that F2 also satisfies another expected property of the X factor in many long

run risk models. It has been pointed out by Bansal, Yaron, and Kiku (2007), Bansal,

Dittmar, and Lundblad (2005), Bansal, Dittmar, and Kiku (2009), Da (2009) and oth-

ers, the long run risk model implies that assets with higher sensitivity of predictable

dividend growth to the long run risk factor X, which is measured by φi,l in our model,

have higher expected excess returns.25 Hence, if the long run risk model holds, we will

generally expect to find that the coefficients obtained on regressing the future dividend

growths of various portfolios against F2 are significantly different from each other and

that they are related to their expected excess returns. We do find that to be the case

with the F statistic strongly rejecting the equality of the regression coefficients obtained

on regressing real dividend growth of each of the 25 portfolios on the lagged value of F2

(the value of the statistic being 2.20 (p < 0.001)). We also find, as expected, that these

regression coefficients are higher for the portfolios of small and value stocks which have

24We note that while the use of this measure of consumption is not standard, it is more relevant for
the current analysis as it better matches the information structure of the consumers in the economy.
(It is also possible that real time data captures the sentiment of consumers as it reflects their current
view of the state of the economy.)

25While this is not necessarily true in our version of the long run risk model as we do not set πi,l,x
to zero, our version still implies a positive relationship between φi,l and the expected excess return of
asset l holding πi,l,x constant.
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higher excess returns. We note that this result is not very surprising given the form of

the rotation matrix relating F2 to the log P/D ratios.26

Given the long run risk model, we also expect to find little if any cross-sectional

variation of the sensitivity of dividend growth to the volatility factor. Empirically, we

do find that this is largely the case with corresponding F statistic for F1 (the principal

component related to the volatility) being much lesser at 1.73 (p = 0.015). While this is

marginally significant, it is mostly because the regression coefficients for the portfolios

corresponding to the smallest stocks being larger than the others.27 Since the size

premium is much less robust than the value premium, we see that this cross-sectional

variation is not strongly related to expected excess returns.

We do note that there is no strong relation between the two principal components

and short term consumption growth when consumption is defined as the consumption of

nondurables and services estimated with the use of current data. However, we also find,

from the results of regressing current annual consumption growth against the fourth lag

of IF a
2 , which are summarized in table (VI), that there is a significant negative relation

between them which could mask the true long run relation between F a
2 and future

consumption growth. Keeping this in mind, we examine the results of regressing five year

consumption growth after the first five years (i.e. ct+10−ct+5) against the lagged principal

components which are also summarized in table (VI). We find that the coefficient of F2

is significant at the 10% level (using Newey-West corrected standard errors) and that

the coefficient of F1 is insignificant. Hence, there is some evidence that F2 is positively

related to future long term consumption growth even when the conventional measure is

used. We find that this positive relationship is concentrated in the services sector and

that regressing three or five year services consumption growth after the first five years

on the lagged principal components gives rise to coefficients which are significant at the

26As in Bansal, Dittmar, and Lundblad (2005), most of the individual coefficients are not significant
but they are significantly different from each other.

27We used annual values for the above analysis in order to eliminate issues arising from dividend and
CPI seasonality and to minimize the confounding effects that arise from overlapping regressions.
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1% level. This result is consistent with the evidence documented by Marakani (2009)

that services consumption growth exhibits highly significant long term autocorrelations

unlike nondurables consumption growth. Further, the fact that the significant coefficient

is that of F2 and that it is of the same sign as it’s regression coefficient for future market

and cross-sectional dividend growth constitutes significant evidence that F2 captures a

long run component which is related to both future consumption and dividend growth.

We further note that the log market P/D ratio does not predict consumption growth

even after a gap of a few years unlike F2 and that the R2 of the regression of ct+10− ct+5

on the lagged log market P/D ratio is a negligible 10−6.28 Hence, it does not capture

any such long run component as noted by Beeler and Campbell (2009).

Table VI
Regressions examining the relation between conventionally measured

consumption growth and the lagged principal components

The first table tabulates the result of regressing annual consumption growth on
the fourth lag of IF a2 , the innovation of the second principal component of the
annual log P/D ratios. The second and third tables respectively tabulate the
result of regressing five year overall and services consumption growth after five
years (i.e., ct+10− ct+5 and csert+10− csert+5) on lagged F a1 and F a2 , the two significant
principal components of the annual log P/D ratios. The standard errors in the
latter two tables are Newey-West corrected with the number of lags determined
by the procedure in Newey and West (1994).

Regression of annual consumption growth on the fourth lag of IF a
2

Intercept IF a
2,t−3 R2

∆ct+1 0.0194 (0.0015) −0.0079∗∗ (0.0037) 7.3%

Regression of five year consumption growth after five years
on lagged F a

1 and F a
2

Intercept F a
1,t F a

2,t R2

ct+10 − ct+5 0.104 (0.010) -0.0015 (0.0039) 0.0164∗ (0.0090) 19.1%

Regression of five year services consumption growth after five years
on lagged F a

1 and F a
2

Intercept F a
1,t F a

2,t R2

csert+10 − csert+5 0.121 (0.011) -0.0048 (0.0049) 0.0214∗∗∗ (0.0066) 46.4%

28Using services consumption growth only increases this R2 to 1.4%.
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While we are of the opinion that real time data provides a better measure of con-

sumption growth in the context of long run risk models, some readers will be concerned

at the lack of evidence for a strong relationship between conventionally measured con-

sumption growth and log P/D ratios. We note that the lack of this evidence is not

surprising as consumption growth is known to be largely unforecastable in the post

WW2 period. In order to address these concerns, we note that the relationship we find

using conventionally measured consumption growth, while weak, is much stronger than

that obtained when only the log market P/D ratio is used (as is done by Beeler and

Campbell (2009)). We also note that prior studies examining the relation between re-

turns or dividends and future consumption growth conclude that such relations exist

even when the regression coefficients are not conventionally significant. For example, we

note that the regressions that provide evidence for the relation between SMB, HML and

future consumption growth by Parker and Julliard (2005) and for the relation between

cross sectional dividend growth and consumption growth by Bansal, Dittmar, and Kiku

(2009) do not give rise to statistically significant coefficients. Further, we note that, as

pointed out by Hansen and Sargent (2007), the predictable component of consumption

growth can be small enough to be undetectable by standard statistical tests but still

large enough to be economically important and the weak but suggestive relation we find

is strong enough to significantly affect asset prices.29

Since the above regressions involve the whole sample and are subject to potential

forward looking bias,30 we investigate whether the predictability implications that lead

to the identification of the first two principal components as affine functions of the long

run risk factors X and V hold out of sample in appendix D, and find that they indeed

do so. Hence, we see that our results are at least partially robust to forward looking

bias.

29This is shown in unreported results of asset pricing tests using the innovations of projections of
future consumption growth on F1 and F2.

30We thank Dana Kiku for bringing this point to our attention.

37



We now investigate the relation between the innovations of the principal components

and the Fama-French factors in order to examine what these factors stand for in the

context of the long run risk model. To do so, we summarize the results obtained on

regressing IF a
1 and IF a

2 on the annual Fama-French factors in table (VII). We find, from

them, that IF a
1 and IF a

2 can be approximately written as Mkt + SMB and Mkt +

HML respectively. In other words, we find that, in the framework of this analysis,

excess market returns are related to both consumption growth and consumption growth

volatility, that SMB is related to consumption growth volatility and that HML is related

to future consumption and dividend growth.

Table VII
Relation between the innovations to the principal components and the

Fama-French factors

Results of regressing IF a1 and IF a2 ,the innovations of the two significant principal
components of the annual log P/D ratios on the Fama-French factors.

Intercept Rm −Rf SMB HML R2

IF a
1 −0.39∗∗∗ (0.09) 3.95∗∗∗ (0.42) 2.10∗∗∗ (0.58) 0.50 (0.56) 68.8%

IF a
2 −0.19∗∗∗ (0.04) 1.42∗∗∗ (0.18) −0.22 (0.25) 1.42∗∗∗ (0.25) 60.0%

Given the form of the factors above, we relabel F1 as F−V ol (the negative sign is

to remind us that this the relationship between F1 and consumption growth volatility

is negative) and F2 as FX for the rest of this paper. We will also refer to F−V ol as a

negative volatility factor and to FX as a consumption/dividend growth factor.

D. Asset Pricing Tests

In the asset pricing tests below, we ignore the contemporaneous consumption growth

factor which is technically required for completeness due to the presence of the ct+∆t−ct
term in (9). This is mainly due to two reasons. The first is that there is significant

measurement error in consumption growth as we show in appendix B. The second is

that it is difficult, if not impossible, to account for the complications introduced by
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time aggregation which have been discussed in detail by Marakani (2009) and others.

We note that these two reasons may partially account for the fact that previous studies

have shown that contemporaneous consumption growth is incapable of explaining excess

asset returns and that including the contemporaneous consumption growth factor makes

no difference to our conclusions.31 We further note that a similar procedure is followed

by Malloy, Moskowitz, and Vissing-Jørgensen (2009).

Since the dividends in this analysis have to be measured annually due to seasonality

considerations, the asset pricing restrictions are only strictly correct at the annual time

scale. Hence, we restrict ourselves to annual data in the following.

D.1. Cross Sectional Regressions

As explained in the previous section, we examine the results of analyzing both the full

and restricted beta pricing relationships (19) and (21). We first present our analysis of

the restricted linear beta pricing relationship (21).

Our empirical analysis of the restricted beta pricing relationship (21) (ignoring the

first term as explained earlier) reveals that it performs well. This conclusion follows

from the results of the OLS and WLS cross sectional regressions for this beta pricing

relationship (using IF−V ol and IFX) which are summarized in table (VIII). We find,

both from the table and from figure 7, that the cross sectional performance of the

model is fairly good with the OLS R2 of the cross sectional regression being 64.8%. In

addition, we find that λIF−V ol and λIFX , the coefficients of βIF−V ol and βIFX in the cross

sectional regression, are jointly significantly different from zero at the 5% level (p=0.028).

Further, the intercept term in the cross sectional regression is not statistically different

from zero.32

31The results with the contemporaneous consumption growth factor are available upon request.
32In unreported results which are available upon request, we find that this is also true for innovations

of the principal components at the monthly frequency.
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Table VIII
Results of the cross sectional regression

E[ri,t+∆t − rf ,t] + 1
2Var[ri,t+∆t − rf ,t] ≈ β∆cλ∆c +

∑n+m
j=1 βIFj

λIFj

for the 25 Fama-French portfolios

Results of the two pass cross sectional regression, together with the corresponding
dispersion in βs and pricing errors, of the 25 Fama-French portfolios on IF−V ol and
IFX , the innovations to the negative volatility and consumption/dividend growth
factors. For the OLS coefficients, the t values with and without the Shanken
correction (Shanken 1992) (Shanken and Zhou 2007) are reported below the co-
efficient (the value without the correction is reported first) while for the WLS
coefficients, only the t values with the correction are reported. The R2 adjusted
for the number of variables is reported below the unadjusted R2.

Intercept λIF−V ol λIFX R2

OLS -0.026 0.498 0.432 64.8%
(-0.77) (2.17) (3.77) (61.6%)
(-0.52) (1.60) (2.67)

WLS -0.032 0.586 0.407
(-0.67) (1.92) (2.64)

Dispersion in βIF−Vol

Growth Value
1 2 3 4 5

Small 1 0.226 (0.033) 0.211 (0.023) 0.169 (0.021) 0.155 (0.018) 0.159 (0.022)
2 0.190 (0.025) 0.150 (0.018) 0.144 (0.017) 0.141 (0.015) 0.124 (0.020)
3 0.167 (0.023) 0.130 (0.016) 0.109 (0.015) 0.119 (0.016) 0.113 (0.018)
4 0.144 (0.020) 0.107 (0.016) 0.111 (0.015) 0.110 (0.015) 0.134 (0.020)

Large 5 0.112 (0.019) 0.084 (0.014) 0.076 (0.017) 0.080 (0.017) 0.089 (0.019)
F -stat = 5.55 (p < 10−16)

Dispersion in βIFX
Growth Value

1 2 3 4 5
Small 1 0.007 (0.087) 0.085 (0.060) 0.102 (0.053) 0.139 (0.048) 0.176 (0.058)

2 0.044 (0.065) 0.084 (0.047) 0.109 (0.044) 0.158 (0.040) 0.201 (0.051)
3 0.031 (0.058) 0.131 (0.041) 0.156 (0.039) 0.193 (0.042) 0.200 (0.047)
4 0.033 (0.051) 0.159 (0.040) 0.186 (0.042) 0.208 (0.040) 0.209 (0.051)

Large 5 0.065 (0.048) 0.143 (0.037) 0.151 (0.044) 0.202 (0.045) 0.251 (0.049)
F -stat = 2.18 (p = 8.1× 10−4)

Pricing errors ×100
Growth Value

1 2 3 4 5
Small 1 2·80 0·56 −0·81 −2·13 −2·38

2 2·32 −0·82 −2·25 −0·78 −1·92
3 0·29 −0·10 −0·71 0·03 −1·40
4 −1·33 1·66 0·78 1·01 0·76

Large 5 −0·81 0·96 −0·34 1·63 2·95
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Figure 7
Results of the cross sectional regression of the 25 Fama-French portfolios us-
ing IF−V ol and IFX , the innovations to the negative volatility and consump-
tion/dividend growth factors.

A common concern when using the cross sectional regression methodology is that the

betas do not show sufficient cross sectional variation. However, the results summarized

in table (VIII) show that this is not the case here and the F test for the hypothesis that

the portfolio betas are all equal (for either IF−V ol or IFX) strongly rejects it (p < 10−3).

While the model prices the 25 Fama-French portfolios, which have posed a challenge

to traditional consumption based asset pricing models, quite well, it is important to

examine whether it is also able to price other portfolios as our factor estimates are

derived using them. Hence, we repeat the analysis using three sets of ten portfolios

each formed on the basis of long term reversal, short term reversal and the E/P ratio as

described in the data section (leaving FX and F−V ol the same as they have already been

identified).

We find that these thirty portfolios are priced well by IF−V ol and IFX . The cross-

sectional regression intercept is negligible (-0.007) and the two innovations are jointly
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Table IX
Results of the cross sectional regression

E[ri,t+∆t − rf ,t] + 1
2Var[ri,t+∆t − rf ,t] ≈ β∆cλ∆c +

∑n+m
j=1 βIFj

λIFj

for 30 portfolios

Results of the two pass cross sectional regression, including pricing errors, of 30
portfolios (three sets of ten portfolios formed on the basis of long term reversal,
short term reversal and the E/P ratio) on IF−V ol and IFX , the innovations to
the negative volatility and consumption/dividend growth factors. For the OLS
coefficients, the t values with and without the Shanken correction (Shanken 1992)
(Shanken and Zhou 2007) are reported below the coefficient (the value without
the correction is reported first) while for the WLS coefficients, only the t values
with the correction are reported. The R2 adjusted for the number of variables is
reported below the unadjusted R2.

Intercept λIF−V ol λIFX R2

OLS -0.007 0.292 0.419 72.7%
(-0.31) (1.40) (4.21) (70.7%)
(-0.21) (1.07) (3.13)

WLS -0.016 0.375 0.415
(-0.47) (1.48) (3.32)

Pricing errors ×100
bottom top

1 2 3 4 5 6 7 8 9 10
Long term reversal −0·64 −1·88 −0·74 0·09 0·28 −0·93 −0·78 −0·11 1·81 0·16
Short term reversal 2·32 −2·28 −1·61 −0·31 −0·08 1·58 0·86 0·50 0·34 2·53

E/P ratio −0·70 0·52 0·62 0·60 0·00 −0·65 −1·29 0·52 −0·40 −0·29

significantly priced at the 1% level. The OLS R2 is found to be 73%. We summarize

these results in table (IX) and graph the cross sectional regression in figure 8.

Hence, we conclude that the innovations of the long run risk components (identified

from the first two principal components of the log P/D ratios of the 25 Fama-French

portfolios) are able to price a variety of equity portfolios which have posed a challenge

to traditional asset pricing models.

The above results show that the data supports the restricted linear beta pricing

relationship (21) quite well. However, as noted in our earlier discussion, the approxima-

tion involved in deriving this relationship is equivalent to the approximation that time

varying expected returns are unimportant for the set of assets being considered. Hence,
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Figure 8
Results of the cross sectional regression of 30 portfolios (three sets of ten portfolios
formed on the basis of long term reversal, short term reversal and the E/P ratio)
using IF−V ol and IFX , the innovations to the negative volatility and consump-
tion/dividend growth factors.

we now investigate the full linear beta pricing relationship (19), which does account for

time varying expected returns. We find that it produces even better results for the 25

Fama-French portfolios and similar results for the set of thirty portfolios discussed above.

This is seen, for the former, in the cross sectional regression results tabulated in table

(X) and plotted in figure 9 and, for the latter, in the cross sectional regression results

tabulated in table (XI) and plotted in figure 10. The OLS R2 is quite high at 77.5% for

both cross sectional regressions.33 Further, the estimates of the cross-sectional regression

intercepts are very low for the regressions involving the 25 Fama-French portfolios and

the alternate set of thirty portfolios, being 0.3% and -1.1% per year respectively. This

33The pricing relationship (19) is also empirically supported at the quarterly frequency. While we
do not report detailed results at this frequency for brevity, we note that the cross sectional regression
intercept is not significantly different from zero and that the OLS R2 is greater than 65% for both the
25 Fama-French portfolios and the other set of thirty portfolios.
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Table X
Results of the cross sectional regression

E[ri,t+∆t − rf ,t] + 1
2Var[ri,t+∆t − rf ,t] ≈ β∆cλ∆c +

∑n+m
j=1 βFj

λFj
+
∑n+m

j=1 βIFj
λIFj

for the 25 Fama-French portfolios

Results of the two pass cross sectional regression, including pricing errors, of the 25
Fama-French portfolios on lagged F−V ol and FX and concurrent IF−V ol and IFX .
Recall that F−V ol and FX are the negative volatility and consumption/dividend
growth factors and IF−V ol and IFX are their innovations. For the OLS coef-
ficients, the t values with and without the Shanken correction (Shanken 1992)
(Shanken and Zhou 2007) are reported below the coefficient (the value without
the correction is reported first) while for the WLS coefficients, only the t values
with the correction are reported. The R2 adjusted for the number of variables is
reported below the unadjusted R2.

Intercept λF−V ol λFX λIF−V ol λIFX R2

OLS 0.003 1.35 -0.568 0.693 0.306 77.5%
(0.10) (1.71) (-3.05) (2.85) (2.71) (73.0%)
(0.07) (1.20) (-2.17) (2.03) (1.88)

WLS -0.003 1.09 -0.511 0.697 0.306
(-0.07) (1.03) (-2.13) (2.10) (1.99)

Pricing errors ×100
Growth Value

1 2 3 4 5
Small 1 0·31 1·35 0·53 −0·74 −2·37

2 1·73 −0·75 −1·38 0·59 −2·81
3 −0·25 0·03 −1·14 0·00 −0·61
4 −0·67 1·05 0·66 0·92 0·63

Large 5 −0·32 1·84 −1·37 1·19 1·57

provides important support for our specification as these intercepts must be zero for a

correctly specified model as emphasized by Jagannathan and Wang (2007).

The results also imply that, in our framework, time varying expected returns are

important to take into account when pricing the 25 Fama-French portfolios but not

when pricing the other set of thirty portfolios as the factor risk premia of the lagged

factors are only significant for the former.
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Figure 9
Results of the cross sectional regression of the 25 Fama-French portfolios using
IF−V ol, IFX and lagged values of F−V ol and FX . Recall that F−V ol and FX are
the negative volatility and consumption/dividend growth factors and IF−V ol and
IFX are their innovations.

D.2. Robustness Tests

Since the excess returns of the 25 Fama-French portfolios formed on the basis of size and

book to market ratio have a strong factor structure, it is important to use robust test

statistics to eliminate the problem of useless factors being identified as useful (a problem

forcefully brought out by Kleibergen (2009) and Kleibergen (2010)). Hence, we test the

above cross sectional regressions using the robust test statistics suggested by Kleibergen

(2009) in appendix D to ensure that the factors here are not useless. As shown in detail

in this appendix, we find that the factors we have identified are not useless according to

this test.

We also note that the number of time series observations in our analysis is small

due to the low frequency data that we use and that we find the betas of the assets to

be significantly different from each other. As noted by Kan and Zhang (1999), these
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Table XI
Results of the cross sectional regression

E[ri,t+∆t − rf ,t] + 1
2Var[ri,t+∆t − rf ,t] ≈ β∆cλ∆c +

∑n+m
j=1 βFj

λFj
+
∑n+m

j=1 βIFj
λIFj

for 30 portfolios

Results of the cross sectional regression, including pricing errors, of 30 portfolios
(three sets of ten portfolios formed on the basis of long term reversal, short term re-
versal and the E/P ratio) on lagged F−V ol and FX and concurrent IF−V ol and IFX .
Recall that F−V ol and FX are the negative volatility and consumption/dividend
growth factors and IF−V ol and IFX are their innovations. For the OLS coef-
ficients, the t values with and without the Shanken correction (Shanken 1992)
(Shanken and Zhou 2007) are reported below the coefficient (the value without
the correction is reported first) while for the WLS coefficients, only the t values
with the correction are reported. The R2 adjusted for the number of variables is
reported below the unadjusted R2.

Intercept λF−V ol λFX λIF−V ol λIFX R2

OLS -0.011 1.21 -0.038 0.392 0.449 77.5%
(-0.45) (1.73) (-0.14) (1.74) (4.73) (73.9%)
(-0.29) (1.24) (-0.09) (1.25) (3.38)

WLS -0.018 1.01 -0.056 0.446 0.445
(-0.52) (1.12) (-0.15) (1.56) (3.56)

Pricing errors ×100
bottom top

1 2 3 4 5 6 7 8 9 10
Long term reversal 0·73 −0·89 −0·12 0·48 0·69 −0·61 −0·80 −0·15 1·77 −0·08
Short term reversal 1·30 −2·29 −1·57 −0·03 0·01 1·47 0·71 0·07 −0·39 2·41

E/P ratio −1·05 0·39 0·75 0·47 −0·22 −1·07 −1·20 0·59 −0·97 −0·41

characteristics make it much less likely that a useless factor is spuriously found to be

“useful” in a cross-sectional regression. Finally, we note that the cross-sectional re-

gression intercept should be zero if the model is correctly specified, as emphasized by

Jagannathan and Wang (2007), and that the intercept that we obtain for each of the

four cross-sectional regressions examined in the previous subsection is indeed close to

zero and insignificantly different from it. In particular, this intercept is only 0.3% per

year for the cross-sectional regression of the 25 Fama-French portfolios on the full set of

variables in the model, i.e. the lagged factors and their innovations.
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Figure 10
Results of the cross sectional regression of 30 portfolios (three sets of ten portfolios
formed on the basis of long term reversal, short term reversal and the E/P ratio)
using lagged F−V ol and FX as well as IF−V ol and IFX . F−V ol and FX are the
negative volatility and consumption/dividend growth factors and IF−V ol and IFX
are their innovations.

D.3. Relation to the Fama-French Three Factor Model

We now investigate the relationship between the long run risk model as analyzed by us

and the standard Fama-French three factor model. Since the intercept for the cross-

sectional regression should be zero for a correctly specified asset pricing model, we

investigate the results of the constrained cross-sectional regression using the lagged long

run risk factors, the long run risk factor innovations and the Fama-French factors (Mkt,

SMB and HML) for both the 25 Fama-French portfolios formed on the basis of size and

book to market ratio as well as the three sets of ten portfolios formed on the basis of

long term reversal, short term reversal and the earnings to price ratio. The results of

these cross-sectional regressions are summarized in table (XII).
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Table XII
Results of the constrained cross sectional regression including the

Fama-French factors for the two sets of portfolios

Results of the constrained cross sectional regression of the 25 Fama-French portfo-
lios and three sets of ten portfolios formed on the basis of long term reversal, short
term reversal and E/P ratio on the lagged long run risk factors F−V ol and FX ,
the long run risk factor innovations IF−V ol and IFX and the Fama-French factors
Mkt, SMB and HML. The t values with and without the Shanken correction
(Shanken 1992) (Shanken and Zhou 2007) are reported below the coefficient (the
value without the correction is reported first).

Results of the constrained cross sectional regression for the
the 25 Fama-French portfolios on the Fama-French factors,

lagged F−V ol, FX and concurrent IF−V ol, IFX
λF−V ol λFX λIF−V ol λIFX λMkt λSMB λHML

OLS 1.04 -0.40 0.60 0.31 7.83 2.73 6.43
(1.63) (-2.19) (3.62) (3.19) (3.35) (1.63) (3.84)
(1.29) (-1.69) (3.07) (2.44) (3.31) (1.62) (3.77)

Results of the constrained cross sectional regression for 30 portfolios
on the Fama-French factors, IF−V ol, IFX and lagged F−V ol and FX

λF−V ol λFX λIF−V ol λIFX λMkt λSMB λHML

OLS 0.33 0.17 0.54 0.32 7.27 0.56 6.67
(0.51) (0.79) (3.54) (4.16) (2.88) (0.22) (2.95)
(0.41) (0.60) (3.18) (3.41) (2.85) (0.18) (2.54)

From the tables, we see that while the lagged long run risk factors and the long run

risk factor innovations do not drive out the Fama-French factors in the cross-sectional

regression, the Fama-French factors also do not drive out the lagged long run risk factors

and the long run risk factor innovations. We hypothesize that this could be due to two

possible reasons. The first possible reason is that there is measurement error in the

estimated long run risk factors. This is highly plausible as the long run risk factors

are estimated using P/D ratios and dividend smoothing causes measurement error in

the P/D ratios. This means that while relatively slow variations of the long run risk

factors can be estimated relatively precisely, their short run variations cannot. These

short run variations might be better picked up by the Fama-French factors since they are

estimated using returns. The second possible reason is that the Fama-French factors,
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being determined by returns, also captures liquidity effects which our model does not

aim to do.

D.4. GMM Tests

While the cross sectional regression methodology above provides a nice, intuitive way of

understanding the importance of the different variables in the stochastic discount factor,

it can only handle linear relationships and needs relatively restrictive assumptions for

accurate results as pointed out by Jagannathan and Wang (2002). Since the exact Euler

equation restrictions

Et[Mt+1R
e
t+1] = 0 (25)

are nonlinear in nature, we now use GMM to ensure that the above results are robust.

The results of the GMM estimation of (25) using the 25 Fama-French portfolios sorted

on the basis of size and book to market ratio are summarized in table (XIII). The

corresponding results for the three sets of ten portfolios sorted on the basis of long term

reversal, short term reversal and E/P ratio are summarized in table (XIV).

Table XIII
Results of the GMM test of the Euler equation restrictions

E[Mt+1R
e
t+1] = 0 for the 25 Fama-French portfolios

GMM test of the Euler equation restrictions E[Mt+1R
e
t+1] = 0 for the 25 Fama-

French portfolios sorted on the basis of size and book to market ratio without
taking into account the effect of the mean of the stochastic discount factor as
suggested by Kan and Robotti (2008).

Identity weighting matrix
Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
0.463 (0.683)

Γ2

(
V−V̄
F−V ol

)
0.056 (0.107)

αIFX
= αx

(
X
FX

)
1.734 (0.742)

αIF−V ol
= αv

(
V−V̄
F−V ol

)
0.114 (0.236)

Dist statistic 0.1086

Optimal weighting matrix
Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
0.433 (0.282)

Γ2

(
V−V̄
F−V ol

)
0.036 (0.069)

αIFX
= αx

(
X
FX

)
1.559 (0.448)

αIF−V ol
= αv

(
V−V̄
F−V ol

)
0.106 (0.149)

J statistic 23.97 (p=0.29)
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Table XIV
Results of the GMM test of the Euler equation restrictions

E[Mt+1R
e
t+1] = 0 for thirty portfolios

GMM test of the Euler equation restrictions E[Mt+1R
e
t+1] = 0 for the three sets

of ten portfolios sorted on the basis of long term reversal, short term reversal and
E/P ratio without taking into account the effect of the mean of the stochastic
discount factor as suggested by Kan and Robotti (2008).

Identity weighting matrix
Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
0.329 (0.480)

Γ2

(
V−V̄
F−V ol

)
-0.058 (0.117)

αIFX
= αx

(
X
FX

)
2.139 (0.884)

αIF−V ol
= αv

(
V−V̄
F−V ol

)
-0.050 (0.286)

Dist statistic 0.0603

Optimal weighting matrix
Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
0.254 (0.295)

Γ2

(
V−V̄
F−V ol

)
-0.075 (0.068)

αIFX
= αx

(
X
FX

)
1.758 (0.524)

αIF−V ol
= αv

(
V−V̄
F−V ol

)
0.004 (0.181)

J statistic 25.43 (p=0.49)

Since excess returns are used in these tests, the mean of the stochastic discount factor

must be accounted for by adding an additional moment condition as pointed out by Kan

and Robotti (2008). We report the results obtained after adding this moment condition

in tables (XV) and (XVI) respectively. These results are found to be closer to those

obtained using the cross sectional regression approach. In particular, Γ1 is found to be

fairly large and significant and αv is found to be negative (note that V−V̄
F−V ol

is negative

so that a positive coefficient for αIF−V ol implies a negative coefficient for αv) for the 25

Fama-French portfolios.

Notably, αx, the market price of risk for shocks to expected consumption growth, is

highly significantly positive in all of the GMM estimations with estimates of it’s scaled

value ranging from 1.56 to 2.90. Since αx is directly related to the parameter γ − 1/ψ

which governs the temporal resolution of uncertainty, we can use these estimates to

obtain an estimate for it. After making suitable assumptions about the value of ψ, it

will also enable us to obtain an estimate for γ.

We note that the identification of the two factors in this study also enables the

determination of the relative importance of cash flow and discount rate risks for cross-
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Table XV
Results of the GMM test of the Euler equation restrictions

E[Mt+1R
e
t+1] = 0 together with a moment condition for the mean of M

for the 25 Fama-French portfolios

GMM test of the Euler equation restrictions E[Mt+1R
e
t+1] = 0 together with an

additional moment condition for the 25 Fama-French portfolios to ensure that the
biases introduced due to the unspecified mean of the stochastic discount factor
are taken into account as suggested by Kan and Robotti (2008). Note that the
Dist statistic is not comparable with that in table (XIII) as this test has one more
restriction. The results are for data from 1944-2007 rather than 1944-2008 as the
covariance matrix was very close to singular in the latter data period.

Identity weighting matrix
Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
1.087 (0.804)

Γ2

(
V−V̄
F−V ol

)
0.162 (0.177)

αIFX
= αx

(
X
FX

)
2.176 (1.078)

αIF−V ol
= αv

(
V−V̄
F−V ol

)
0.213 (0.356)

Dist statistic 0.254

Optimal weighting matrix
Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
1.031 (0.311)

Γ2

(
V−V̄
F−V ol

)
0.155 (0.107)

αIFX
= αx

(
X
FX

)
2.204 (0.233)

αIF−V ol
= αv

(
V−V̄
F−V ol

)
0.214 (0.071)

J statistic 9.24 (p=0.99)

sectional returns in the context of long run risk models. This is because the rate at

which future equity cash flows are discounted (the equity risk premium) is determined

by the consumption growth volatility in these models as shown by Bansal and Yaron

(2004) and others, which in turn means that the first factor proxies for discount rate

risk and that the second proxies for cash flow risk. The results of the analysis using

the innovations of the two factors indicate that cash flow risk is cross-sectionally more

important than discount rate risk. This result is robust to the inclusion of the lagged

factors, as is seen from the GMM results summarized below. This study thus underlines

the importance of cash flow risk and contributes to the recent strand of literature that

demonstrates that it can explain a large proportion of the cross-sectional return variation

(Campbell and Vuolteenaho 2004) (Bansal, Dittmar, and Lundblad 2005) (Cohen, Polk,

and Vuolteenaho 2008) (Campbell, Polk, and Vuolteenaho 2009) (Da and Warachka

2009).
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Table XVI
Results of the GMM test of the Euler equation restrictions

E[Mt+1R
e
t+1] = 0 together with a moment condition for the mean of M

for thirty portfolios

GMM test of the Euler equation restrictions E[Mt+1R
e
t+1] = 0 for the three sets

of ten portfolios sorted on the basis of long term reversal, short term reversal and
E/P ratio together with an additional moment condition to ensure that the biases
introduced due to the unspecified mean of the stochastic discount factor are taken
into account as suggested by Kan and Robotti (2008). Note that the Dist statistic
is not comparable with that in table (XIV) as this test has one more restriction.

Identity weighting matrix
Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
1.164 (0.761)

Γ2

(
V−V̄
F−V ol

)
-0.002 (0.120)

αIFX
= αx

(
X
FX

)
2.882 (1.133)

αIF−V ol
= αv

(
V−V̄
F−V ol

)
-0.241 (0.301)

Dist statistic 0.228

Optimal weighting matrix
Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
1.165 (0.420)

Γ2

(
V−V̄
F−V ol

)
-0.008 (0.115)

αIFX
= αx

(
X
FX

)
2.899 (0.398)

αIF−V ol
= αv

(
V−V̄
F−V ol

)
-0.257 (0.135)

J statistic 21.37 (p=0.72)

E. Q4-Q4 Consumption Growth and the Long Run Risk Model

Jagannathan and Wang (2007) and Jagannathan, Marakani, Takehara, and Wang (2011)

find that Q4-Q4 consumption growth explains the cross section of stock returns much

better than annual consumption growth. While these studies interpret the result as

being due to infrequent trading by investors, we find that the long run risk model can

provide a possible alternative explanation for this result. This is because we find that

the correlations between Q4-Q4 consumption growth and the innovations to the long run

risk factors IF−V ol and IFX are much higher than those between annual consumption

growth and IF−V ol and IFX . These correlations, together with the correlations between

Qi-Qi consumption growth (where i is 1, 2 or 3) and IF−V ol and IFX , are summarized

in table (XVII)

Using this observation, we conjecture that Q4-Q4 consumption growth may also

be serving as a proxy for these innovations to the long run risk factors in the pricing

relation. This conjecture is further supported by the fact that Q4-Q4 consumption
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Table XVII
Correlations between consumption growths and IF−V ol and IFX

Correlations between Qi-Qi consumption growth, annual consumption growth
and IF−V ol and IFX (the innovations to the negative volatility and consump-
tion/dividend growth factors).

Consumption growth IF−V ol IFX
Q1-Q1 0.434 0.418
Q2-Q2 -0.301 -0.100
Q3-Q3 -0.083 0.123
Q4-Q4 0.259 0.331
Annual 0.003 0.090

growth is driven out of the cross-sectional regression of the 25 Fama-French portfolios

formed on the basis of size and the book to market ratio by IF−V ol and IFX . The results

of this cross-sectional regression are summarized in table (XVIII).

Table XVIII
Results of the cross sectional regression for the 25 Fama-French

portfolios using Q4-Q4 consumption growth, IF−V ol and IFX

Results of the cross sectional regression of the 25 Fama-French portfolios formed
on the basis of size and book to market ratio using Q4-Q4 consumption growth,
IF−V ol and IFX (the innovations to the negative volatility and consump-
tion/dividend growth factors) from 1953-2007. For the OLS coefficients, the t
values with and without the Shanken correction (Shanken 1992) (Shanken and
Zhou 2007) are reported below the coefficient (the value without the correction is
reported first) while for the WLS coefficients, only the t values with the correction
are reported. The R2 adjusted for the number of variables is reported below the
unadjusted R2.

Intercept λQ4−Q4 λIF−V ol λIFX R2

OLS -0.0468 0.0267 0.631 0.504 58.3%
(-1.11) (0.06) (2.20) (3.26) (52.3%)
(-0.69) (0.04) (1.47) (2.11)

WLS -0.0567 0.012 0.724 0.479
(-0.85) (0.02) (1.71) (2.13)

Since we are using end of year stock prices and returns in our analysis, we should

only consider Q4-Q4 consumption growth. However, it is instructive to also consider the

other correlations in table (XVII). They show that while Q2-Q2 and Q3-Q3 consumption
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growths are largely uncorrelated with IF−V ol and IFX , Q1-Q1 consumption growth is

even more highly correlated with these innovations than Q4-Q4 consumption growth.

Even more interestingly, IF−V ol and IFX do not drive out Q1-Q1 consumption growth

in the cross-sectional regression. This fact is not surprising in itself as the innovation

in consumption growth is a pricing factor in the long run risk model but is surprising

in light of the fact that both Q4-Q4 and annual consumption growth are driven out by

IF−V ol and IFX in the cross-sectional regression.

These results suggest that agents may plan a large part of their Q1 consumption at

the end of the previous Q4 so that Q1-Q1 consumption growth is a better measure of the

consumption planned by the agent when making her consumption-investment decision at

the end of the previous Q4. This implies that Q1-Q1 consumption growth may be serving

not only as a proxy for the innovations to the long run risk factor but also for the true

consumption growth between the points of time at which the consumption-investment

decision is made.

Another possibility is that Q4 and Q1 consumption has a larger proportion of goods

and services that have a long run component. This is particularly plausible as Q4 and

Q1 occur during the holiday season where consumption is more discretionary and, as

Jagannathan, Marakani, Takehara, and Wang (2011) note, the composition of consump-

tion during these quarters is qualitatively different from those of other quarters. This

hypothesis can be tested using international data as the non-holiday affected Q2-Q2

consumption growth explains the cross section of stock returns better than the holiday

affected Q4-Q4 consumption growth in the UK. However, the model will also have to be

theoretically extended before this can be done as it currently treats all non-durables and

services as being perfectly substitutable. Such a study is a subject for future research.
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F. Relative Risk Aversion

Since it is largely FX that predicts future dividend and consumption growth, we can, as

pointed out, among others, by Hansen, Heaton, and Li (2008) and Kaltenbrunner and

Lochstoer (2010), use the GMM estimate for the coefficient of scaled innovation of X

(i.e. IFX) in the stochastic discount factor, αIFX , to make an estimate of the preference

for the early resolution of uncertainty, i.e. γ − 1/ψ. Since the value of the elasticity of

intertemporal substitution (EIS), ψ, has to be large in long run risk models in order for

them to be consistent with the low volatility of the real risk free rate, this value also

provides an estimate of the relative risk aversion γ since γ − 1/ψ ≈ γ if ψ > 1.34

We obtain this estimate by first noting the relation (which follows from the identifi-

cation FX ∝ X and the fact that there is only one identified X component)

αIFX =
γ − 1/ψ

1− ν1(1− α∆t)

(
εt

IFX,t

)
=

γ − 1/ψ

1− ν1(1− α∆t)

(
X

FX

) (26)

where IFX,t and εt = ϕxδx
√
V (Yt−Yt−1) stand for the innovations of the second principal

component and X respectively (note that IFX,t and εt are proportional to each other here

so that their ratio is still independent of t). An estimate for X
FX

can be obtained from the

results of the regression in table (V). Using the relation (1), it is not difficult to see that

coefficient obtained when regressing ∆ct+1 + ∆ct+2 on Xt is given by
∑1

i=0(1 − α∆t)i.

Hence, the coefficient obtained when regressing ∆ct+1 + ∆ct+2 on FX is

1∑
i=0

(1− α∆t)i
X

FX
(27)

34We also note that a large value of ψ is not only strongly suggested by the low volatility of the real
risk free rate but also by the analysis of household survey data by Vissing-Jørgensen and Attanasio
(2003) and by the study of an elegant natural experiment by Kapoor and Ravi (2010).
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By noting that the persistence of the X process is the same as that of FX since they

are proportional, we find α to be about 0.15 on the annual time scale. Using this value

and the regression coefficient of 0.0123 obtained in table (V), we find that FX
X
≈ 150.

This value, together with the annual estimate of 0.99712 ≈ 0.97 for ν1 from Bansal and

Yaron (2004) and the GMM estimates of 1.56 to 2.89 for the market price of risk of

innovations to FX , give an estimate of between 40 and 75 for γ − 1/ψ (or equivalently

γ since γ � 1/ψ). While high, this estimate is similar to the value of 60 obtained by

Chen, Favilukis, and Ludvigson (2007).

The leverage of market dividend growth on long term consumption growth can be

similarly estimated from the results in table (V). It is found to be about 3.3 when three

year market dividend growth is used in the analysis. This value is remarkably similar to

that proposed by Bansal and Yaron (2004).

It should be noted that the main reason that the risk aversion estimate here is

much higher than that proposed by Bansal and Yaron (2004) is that the volatility of

consumption growth after the structural break (1.85×10−4) is much lower than that for

the entire period for which data is available (4.92 × 10−4). If we scale the relative risk

aversion value estimates that we obtain by the ratio of these volatilities, we find that it

is very similar to the value of 16 obtained by Bansal, Yaron, and Kiku (2007). Hence,

it is possible that a long run risk model which accounts for structural breaks or regime

shifts in the parameters will require a much lower relative risk aversion to explain asset

prices as such a model can have a much higher unconditional volatility of consumption

growth and still be consistent with the data. We also note that the standard errors for

our estimate are large and we cannot rule that the relative risk aversion value is below

10 at the 1% level of significance.
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VI. Conclusion

In this paper, we show that long run risk models in general, including those of Bansal and

Yaron (2004), Bansal, Yaron, and Kiku (2007) and Zhou and Zhu (2009), imply that the

log P/D ratios of financial assets have a strict factor structure when the intertemporal

budget constraint of the marginal investor can be well approximated by the loglinear

method of Campbell and Shiller (1988). Further, we demonstrate that these factors

must be related to aggregate consumption growth and consumption growth volatility

when there is a representative agent. When we restrict attention to the post-1942 data

so as to account for the structural break documented by Marakani (2009), we find that

the log P/D ratios of the 25 Fama-French portfolios have two significant factors, one

of which is related to aggregate consumption growth volatility and the other to future

dividend and real time aggregate consumption growth.

We also find these factors and their innovations do a reasonably good job of explaining

the cross section of returns of not only the 25 portfolios from which they were formed

but also three sets of ten portfolios based on long term reversal, short term reversal and

the earnings to price ratio. The coefficients obtained from the cross sectional regressions

are statistically and economically significant and have the right sign, and the zero beta

rate is not significantly different from zero. Thus, we find that long run risk models of

the type considered in the literature have the potential to explain financial market facts.

Our findings link the classical commonly used linear factor models in the finance

literature with the more recent long run risk models. The crucial difference is that

it is the factor structure of the component of returns orthogonal to contemporaneous

dividend shocks which matters in long run risk models.

Beeler and Campbell (2009) point out that long run risk models imply counter-

factually high predictability of long term aggregate consumption growth, long term

dividend growth and future market volatility by the market price-dividend ratio. In this
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paper, we address the first two issues by showing that a log P/D factor does in fact

predict long term dividend growth and real time consumption growth.

While we do not consider market volatility in this paper, we do find, in unreported

results, some indicative evidence that the same log P/D factor also predicts market

volatility. However, the predictability that we find is different from what is expected

from the model since this factor does not predict consumption growth volatility. Beeler

and Campbell (2009) also point out that long run risk models imply counter-intuitively

high or infinite prices for real risk free consol bonds. This weakness of the long run risk

model (and many other asset pricing models) is related to the fact that the variance of the

permanent and transitory components of it’s stochastic discount factor are inconsistent

with the data as pointed out by Bakshi and Chabi-Yo (2011). These are issues to be

addressed in future research.
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A. Log P/D Ratios in the General Long Run Risk

Model

The methodology here closely follows that of Bansal and Yaron (2004) and Bansal, Yaron,

and Kiku (2007) as there are only two cases in the literature where solutions are available for

models with Epstein-Zin preferences. The first case, which we are interested in here, is when

the returns are loglinear in the state variables and the second is when ψ = 1.

Let c, Xi, 1 ≤ i ≤ n and Vj , 1 ≤ j ≤ m be the log consumption process, n processes that

determine it’s conditional growth rate and m processes that determine it’s conditional growth

rate volatility respectively. Let dl, l ≤ 1 ≤ L be the log dividend processes of L assets (in

general, the lower case variables correspond to the logarithm of the upper case variables). We

assume that these quantities follow the processes

ct+∆t =ct +

(
µ+

n∑
i=1

Xi,t

)
∆t+

√√√√ m∑
j=1

δ2
c,jVj,t (Wt+∆t −Wt)

−
m∑
k=1

ϕw,k
√
Vk,t (Zk,t+∆t − Zk,t)

(28)

Xi,t+∆t =Xi,t(1− αi∆t) + ϕi,x

√√√√ m∑
j=1

δ2
x,i,jVj,t (Yi,t+∆t − Yi,t), 1 ≤ i ≤ n (29)

Vi,t+∆t =Vi,t − κi(Vi,t − V̄i)∆t+ σi
√
Vi,t (Zi,t+∆t − Zi,t), 1 ≤ i ≤ m (30)

dl,t+∆t =dl,t +

(
µl +

n∑
i=1

φl,iXi,t

)
∆t+ πl,d

(
∆ct+∆t −

(
µ+

n∑
i=1

Xi,t

)
∆t

)

+
n∑
i=1

πi,l,x(Xi,t+∆t −Xi,t(1− αi∆t))

+
m∑
j=1

πj,l,wσj
√
Vj,t (Zj,t+∆t − Zj,t)

+

√√√√ m∑
k=1

δ2
l,d,kVk,t (Bt+∆t −Bt)

(31)
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where W , Yi, 1 ≤ i ≤ n, Zj , 1 ≤ j ≤ m and B are independent Brownian processes and∑m
i=1 δ

2
c,i =

∑m
j=1 δ

2
x,i,j =

∑m
k=1 δ

2
l,d,k = 1. We have written the equations in this form (with the

time step being ∆t rather than 1) to make the time scale dependence of the parameters explicit

so that the connection with the continuous time solution can be made in a straightforward

manner. We also define the consumption and dividend variables as rates since they are flow

variables. This means, for example, that consumption from time t to t+∆t is given by Ct+∆t∆t.

Since the consumer preferences are of the Epstein-Zin type

Ut = ((1− δ)(Ct∆t)
1−γ
θ + δEt[U

1−γ
t+∆t]

1
θ )

θ
1−γ (32)

where

θ =
1− γ

1− 1/ψ
(33)

the log stochastic discount factor in discrete time can be written as

mt+∆t = θ log δ − θ

ψ
∆ct+∆t + (θ − 1)rc,t+∆t (34)

where rc,t+∆t is the continuously compounded rate of return on the wealth W (which is the

asset that delivers a dividend of per capita consumption at every time period) from t to t+∆t.

Since we assume complete markets,

Et[exp(mt+∆t + rc,t+∆t)] = 1 (35)

must hold.

The loglinear approximation pioneered by Campbell and Shiller (1988) allows us to write

rc,t+∆t = ν0 + ν1(wt+∆t − ct+∆t)− (wt − ct) + ∆ct+∆t (36)
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where

ν0 = log(∆t+ exp(w − c))− ν1(w − c) ≈ exp(c− w)(1 + (c− w))∆t (37)

ν1 =
1

1 + exp(c− w)∆t
≈ 1− exp(c− w)∆t (38)

(the approximation holds when ∆t is small) where the bar stands for the mean value. We

further assume that the log wealth to consumption ratio can be written as

wt − ct = A0 +
n∑
i=1

A1,iXi,t +
m∑
j=1

A2,jVj,t (39)

and justify this below. (This approach is standard and followed by Bansal and Yaron (2004),

Bansal, Yaron, and Kiku (2007) and Zhou and Zhu (2009) as the only non-trivial models with

Epstein-Zin preferences which can be solved are those where the consumption to wealth ratio

is loglinear in the state variables as above or where ψ = 1, as in the model of Hansen, Heaton,

and Li (2008)).

Substituting (34), (36) and (39) into (35), using the fact that

logEt[expA(Wt+∆t −Wt)] =
A2∆t

2
(40)

for any A ∈ R and Wiener process W , and that (35) should hold for any possible attainable

combination of state variables (Xi, Vj), we obtain a set of equations which enable us to solve

for A0, A1,i, 1 ≤ i ≤ n and A2,j , 1 ≤ j ≤ m. The fact that such a set of equations with

non-vacuous solutions exist justifies the assumption (39).

The set of equations for A1,i are

(1− γ)∆t+ θA1,i(ν1(1− αi∆t)− 1) = 0 (41)

so that

A1,i =
(1− 1

ψ )∆t

1− ν1(1− αi∆t)
(42)
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which, in the limit ∆t → 0, becomes A1,i = 1−1/ψ
exp(c−w)+αi

. This is the same result as that

obtained by Zhou and Zhu (2009), where there is only one X variable, once we relate his

notation of g1 for exp(c− w) and allow for the negative sign which arises from his definition

of A1 in terms of the consumption to wealth ratio. Once we set ∆t = 1 and relabel ν1 as κ1

and αi as 1− ρ (again, there being only one X state variable) to match the notation of Bansal

and Yaron (2004), we find that our result also matches their’s.

The analogous set of equations which enables us to solve for A2,j , 1 ≤ j ≤ m is

(1− γ)2δ2
c,j∆t

2
+ θA2,j(ν1(1− κj∆t)− 1)

+
∆t

2

(θν1

n∑
i=1

A1,iϕx,iδx,i,j

)2

+ (θν1A2,jσj − (1− γ)ϕw,j)
2

 = 0

(43)

Since these equations are quadratic, there are two solutions for each A2,j . However, one of

them diverges when σj → 0. Hence, the other solution is the one which is relevant to the

model. The final equation, which allows us to solve for A0, is

θ

log δ + ν0 + (ν1 − 1)A0 + ν1

m∑
j=1

A2,jκj∆tV̄j

+ (1− γ)µ∆t = 0 (44)

Putting the values for A0, A1,i, 1 ≤ i ≤ n and A2,j , 1 ≤ j ≤ m into (39) and using (36) and

(34), we obtain the log stochastic discount factor

mt+∆t =∆t

Γ0 +

n∑
i=1

Γ1,iXi,t +

m∑
j=1

Γ2,jVj,t


− αc

√√√√ m∑
j=1

δ2
c,jVj,t(Wt+∆t −Wt)

−
n∑
i=1

αx,i

√√√√ m∑
j=1

δ2
x,jVj,t(Yi,t+∆t − Yi,t)

−
m∑
j=1

αv,j
√
Vj,t(Zj,t+∆t − Zj,t)

(45)
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where Γ1,i = 1/ψ, αc = γ and αx,i = γ−1/ψ
1−ν1(1−αi∆t) . The expression for αv,j is complicated and

does not directly concern us here.

Using the process for dividend growth (31), we can use a similar loglinear approximation

to write the return for asset l as

rl,t+∆t = ν0,l + ν1,l(pl,t+∆t − dl,t+∆t)− (pl,t − dl,t) + ∆dl,t+∆t (46)

where

ν0,l = log(∆t+ exp(dl − pl))− ν1,l(pl − dl)

≈ exp(dl − pl)(1 + dl − pl)∆t
(47)

ν1,l =
1

1 + exp(dl − pl)∆t
≈ 1− exp(dl − pl)∆t (48)

As before, we assume that log
(
Pt
Dt

)
can be written as

log

(
Pl,t
Dl,t

)
= pl,t − dl,t = A0,l +

n∑
i=1

A1,l,iXi,t +
m∑
j=1

A2,l,jVj,t (49)

We put (49) into (46) and use the fact that (35) must hold for any possible attainable combi-

nation of state variables (Xi, Vj) to obtain a set of equations which enables us to solve for A0,l,

A1,l,i, 1 ≤ i ≤ n and A2,l,j , 1 ≤ j ≤ m. The fact that such a set of equations with non-vacuous

solutions exist justifies the assumption (49).

The equations for A1,l,i, 1 ≤ i ≤ n, 1 ≤ l ≤ L are

(φl,i − 1/ψ)∆t−A1,l,i(1− ν1,l(1− αi∆t)) = 0 (50)

which give

A1,l,i =
(φl,i − 1/ψ)∆t

1− ν1,l(1− αi∆t)
(51)
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As with the solution for A1,i, 1 ≤ i ≤ n, this solution agrees with the continuous time one

(with n = 1,m = 2) of Zhou and Zhu (2009) and the discrete time one (with n = m = 1) of

Bansal and Yaron (2004) and (Bansal, Yaron, and Kiku 2007).

The equations for A2,l,j , 1 ≤ j ≤ m, 1 ≤ l ≤ L are quadratic in nature and fairly complex

(as for A2,j , the solutions which do not diverge as σj → 0 are chosen). Since their precise

structure does not concern us here, we do not include them for brevity. Similarly, we do not

include the equation for A0,l, 1 ≤ l ≤ L.35

It must be noted that, as the equations for A2,j , 1 ≤ j ≤ m and A2,l,j , 1 ≤ j ≤ m, 1 ≤ l ≤ L

are quadratic in nature, real solutions are not guaranteed. Our numerical experiments indicate

that this is not a serious concern as several sets of reasonable parameter values do not give

rise to this problem (this is also shown by Zhou and Zhu (2009)). If this is a concern, we

can replace the volatility processes by Ornstein-Uhlenbeck ones as done by Bansal and Yaron

(2004) and Bansal, Yaron, and Kiku (2007). However, such volatility processes suffer from

the problem of admitting negative values even in continuous time. This can be quite serious,

even for some common parameter values, as pointed out by Beeler and Campbell (2009). The

square root processes used here can also give rise to negative values in discrete time but the

probability of this occurring for reasonable parameter values is minuscule and our numerical

experiments confirm this. Since both ways of modeling volatility have issues but have received

wide attention in the literature and there is no known alternative for which analytical solutions

can be derived, we use results which hold for both of them.

35They are available upon request from the authors.
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B. Testing Long Run Risk Models : Monte Carlo

Evidence

A. The Model

For the purpose of analyzing the performance of the asset pricing tests, we use the long run risk

model of Bansal and Yaron (2004). In this model, the per capita consumption and dividend

growth rates ∆c and ∆d (for M assets indexed by l) and their common persistent component

x are assumed to follow the processes (see Bansal and Yaron (2004))

∆ct+1 = µ+ xt + σtηt+1 (52)

xt+1 = ρxt + ϕxσtet+1 (53)

∆dl,t+1 = µl,d + φlxt + ϕl,dσul,t+1, 1 ≤ l ≤M (54)

σ2
t+1 = σ2 + ν(σ2

t − σ2) + σwwt+1 (55)

where the shocks et+1, ηt+1 and wt+1 are taken to be independent standard normals for parsi-

mony. ul,t+1 is a vector of normally distributed shocks with covariance Vu which is independent

of e, η and w. In the simulations, Vu is set so as to fit the factor structure of returns. (Note

that we follow the convention that lowercase characters stand for the logarithm of quantities

denoted by the corresponding uppercase characters.)

Consumers in the model have Epstein-Zin preferences (as defined by Epstein and Zin

(1989))

Ut = ((1− δ)C
1−γ
θ

t + δEt[U
1−γ
t+1 ]

1
θ )

θ
1−γ (56)

with γ > 1/ψ. This implies that they prefer early resolution of uncertainty and that persistent

consumption and volatility shocks have a positive market price of risk. With these preferences,

asset returns satisfy

Et

[
δθ
(
Ct+1

Ct

)−θ/ψ
R
−(1−θ)
a,t+1 Ri,t+1

]
= 1 (57)
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where C is per capita consumption, Ra is the gross return on an asset that pays a dividend of

per capita consumption, Ri is the asset return, 0 < δ < 1 is the time discount factor, γ is the

relative risk aversion, ψ is the intertemporal elasticity of substitution (IES) and θ is defined to

be

θ =
1− γ
1− 1

ψ

(58)

The log P/D ratios of assets in this economy have a factor structure (within the loglinear

approximation) with the factors being xt and σ2
t . In other words, if zi,t is the log P/D ratio of

asset i, we have

zi,t = A0,i +A1,ixt +A2,iσ
2
t (59)

This is shown for this particular model by Bansal and Yaron (2004) and similar results for

related models are shown by Bansal, Yaron, and Kiku (2007), Drechsler and Yaron (2011),

Zhou and Zhu (2009), Ferson, Nallareddy, and Xie (2009) and in appendix A of this paper.

Since the dividend processes of the assets are specified in this model, the relation above gives

the time series of their prices for a given realization of the random variables. Hence, the prices

and other quantities of interest in this economy are readily simulated.

B. Monte Carlo Simulation of the Model

We use the global and asset specific parameters summarized in tables (XIX) and (XX) for the

simulations below. We first note that these parameters generate economic moments (calculated

from 500 simulations of the long run risk economy) which are roughly in line with the values

observed in post-1942 (to account for the structural break identified by Marakani (2009)) US

consumption and return data as shown in table (XXI). When realistic noise is added to the log

P/D ratios as described below, they are also compatible with the predictability of real time

consumption growth in the data as seen from the numbers in table (XXII). One moment which

does not match well is the standard deviation of the real risk free rate which is much smaller

in the simulations than in the data. This, however, as argued by Beeler and Campbell (2009),

points to a strength rather than a weakness of the long run risk model as most models struggle
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to make this quantity low enough. Further, as we argue in the next section, this quantity is

very noisily measured which means that the reported standard deviation would be significantly

larger than the actual one.36

Table XIX
Global parameters for the simulation

Global parameters for the simulation (the time unit is one year). µ represents
the unconditional mean of consumption growth, σ it’s conditional volatility, ρ the
first order autocorrelation of the long run risk state variable x, ϕx the conditional
volatility of x in relation to that of consumption growth, ν the first order auto-
correlation of volatility, σw the volatility of volatility, γ the relative risk aversion,
ψ the elasticity of intertemporal substitution and δ the time preference.

Parameter Value

µ 0.02
σ 0.012
ρ 0.85
ϕx 0.45
ν 0.99
σw 10−5

γ 25
ψ 1.5
δ 0.994

The scaled eigenvalues of the covariance matrix of the post-1942 continuously compounded

excess returns of the 25 Fama-French portfolios formed on the basis of size and book to market

ratio are tabulated in table (XXIII) together with the mean, 5th and 95th percentiles of the

corresponding values obtained in 500 simulations of the economy for the same time period (65

years).37 Since the first few eigenvalues, which are of principal interest, are very similar to

those in the data, the model replicates the observed factor structure of excess returns quite

well.

The model also replicates the observed factor structure of log P/D ratios fairly well. This

is best seen from the normalized eigenvalues for the covariance matrix of the log P/D ratios

36Measurement error (in either inflation or dividends) can also account for the somewhat low standard
deviation of real dividend growth of the portfolios in the simulations.

37The model was actually simulated for 165 years with the data for the first 100 years being discarded
so as to minimize the effect of the assumed initial values of the dynamic quantities.
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of the assets, both from the data as well as the simulations, which are tabulated in table

(XXIV). The model’s two factor structure is highly evident here as all the eigenvalues after the

second one are zero. To better reflect the data and investigate the possible consequences of the

inclusion of small, irrelevant factors into the long run risk model, we added white noise with a

variance of 20% of the simulated values to the log P/D ratios. The introduction of this noise

can also be thought of as representing measurement error in the prices or dividends brought

about due to liquidity issues or other market imperfections. The normalized eigenvalues after

adding this noise are summarized in table (XXV). From it, we see that the model is able to

replicate the key elements of this factor structure after adding the noise.38

We thus see that the long run risk model being simulated here is compatible not only

with many of the important observed moments of macroeconomic quantities but also with the

observed factor structure of excess returns and P/D ratios. Given this, it is interesting to

examine the performance of different asset pricing tests for long run risk models within the

context of these simulations. This will enable the study of the effect of finite sample size and

measurement noise on the efficacy of these tests and will point to the choice of test to be used

in this paper. Since we are particularly interested in examining the impact of measurement

noise on these tests, we first turn to the task of establishing a reasonable estimate for the size

of this noise for two important quantities in long run risk models, the consumption growth and

the real risk free rate.

38Note that it is not necessary to replicate the features of the small factors as these represent a very
small fraction of the variance and are not economically interesting.
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Table XX
Asset-specific parameters for the simulation.

Asset-specific parameters for the simulation. The assets are indexed by l. µl,d
represents the unconditional mean of the dividend growth for asset l, φl the de-
pendence of predictable dividend growth on the long run risk state variable x and
ϕl,d the idiosyncratic volatility of dividend growth.

Parameters for the asset dividend growths

l µl,d φl ϕl,d
1 −0.0286 1.7834 19.1677
2 0.0889 3.7689 21.7081
3 0.0160 3.2545 19.4655
4 0.0456 3.4405 23.5766
5 0.0471 2.6758 24.0000
6 0.0907 4.6342 16.6065
7 0.0778 5.8088 16.3543
8 0.0457 2.4918 8.5237
9 0.0928 9.5089 24.0000
10 −0.0145 5.5979 24.0000
11 −0.0012 4.8912 24.0000
12 0.0821 8.5459 22.0032
13 0.0556 10.9271 8.9635
14 0.0272 6.0810 21.8607
15 0.0926 5.1230 24.0000
16 0.0454 5.1540 6.0000
17 0.0327 3.0965 21.1709
18 0.0317 3.3548 16.4485
19 0.0147 3.5232 23.0091
20 0.0619 3.3028 6.6980
21 0.0167 2.5690 12.5081
22 0.0421 10.8271 6.0000
23 0.0901 3.7845 11.6097
24 0.0436 2.5953 24.0000
25 0.0788 3.7323 11.0877
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Table XXI
Model implied moments for important economic quantities compared

with the data

The model implied moments are obtained from 500 simulations.

Moment Data Simulation mean 5th percentile 95th percentile
E[∆ct] 0.0199 0.0200 0.0153 0.0246

Std[∆ct] 0.0136 0.0151 0.0105 0.0194
AC(1)[∆ct] 0.243 0.320 0.148 0.488
E[rf,t] 0.0059 0.0035 -0.0012 0.0079

Std[rf,t] 0.0343 0.0067 0.0045 0.0089
Min[rl,t − rf,t] 0.010 0.018 -0.012 0.049
Max[rl,t − rf,t] 0.133 0.209 0.131 0.292
MinE[∆dl,t] -0.023 -0.030 -0.062 0.002
MaxE[∆dl,t] 0.105 0.104 0.070 0.149
Min Std[∆dl,t] 0.087 0.085 0.075 0.095
Max Std[∆dl,t] 0.385 0.306 0.279 0.333

Table XXII
Predictability of consumption growth in the model and in the data.

For the data, we use real time consumption growth as the measure of consumption
growth. The results for the model are derived from 1000 simulations over 165 years
with the data for the first 100 years being dropped so as to limit the impact of
initial values on the numbers.

Data Simulation mean 5th percentile 95th percentile
17.4% 32.6% 10.6% 55.2%
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Table XXIII
Factor structure of excess returns in the model and in the data

Eigenvalues of the covariance matrix of the continuously compounded excess re-
turns of the 25 Fama-French portfolios as well as those obtained by simulating the
model.

Eigenvalues of the covariance matrix of excess returns

Data Simulation mean 5th percentile 95th percentile
1.00000 1.00000 1.00000 1.00000
0.06052 0.06171 0.04705 0.07889
0.04741 0.03926 0.02994 0.04970
0.01280 0.01135 0.00871 0.01403
0.00823 0.00807 0.00637 0.01010
0.00626 0.00667 0.00531 0.00824
0.00535 0.00573 0.00455 0.00711
0.00389 0.00497 0.00399 0.00613
0.00339 0.00433 0.00351 0.00541
0.00316 0.00375 0.00302 0.00460
0.00288 0.00331 0.00267 0.00403
0.00231 0.00294 0.00240 0.00359
0.00207 0.00263 0.00214 0.00324
0.00200 0.00236 0.00191 0.00289
0.00149 0.00213 0.00170 0.00265
0.00142 0.00191 0.00152 0.00234
0.00132 0.00171 0.00136 0.00212
0.00108 0.00151 0.00118 0.00186
0.00099 0.00132 0.00106 0.00164
0.00097 0.00112 0.00087 0.00139
0.00074 0.00076 0.00059 0.00095
0.00067 0.00058 0.00045 0.00075
0.00056 0.00040 0.00030 0.00050
0.00045 0.00030 0.00023 0.00038
0.00043 0.00023 0.00017 0.00029
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Table XXIV
Factor structure of log P/D ratios in the model and in the data.

Eigenvalues of the covariance matrix of the log P/D ratios of the 25 Fama-French
portfolios as well as those obtained by simulating the model.

Eigenvalues of the covariance matrix of log P/D ratios

Data Simulation mean 5th percentile 95th percentile
1.00000 1.00000 1.00000 1.00000
0.06041 0.03598 0.01272 0.07067
0.01669 0.00000 0.00000 0.00000
0.01169 0.00000 0.00000 0.00000
0.00627 0.00000 0.00000 0.00000
0.00522 0.00000 0.00000 0.00000
0.00494 0.00000 0.00000 0.00000
0.00318 0.00000 0.00000 0.00000
0.00245 0.00000 0.00000 0.00000
0.00238 0.00000 0.00000 0.00000
0.00215 0.00000 0.00000 0.00000
0.00168 0.00000 0.00000 0.00000
0.00137 0.00000 0.00000 0.00000
0.00101 0.00000 0.00000 0.00000
0.00094 0.00000 0.00000 0.00000
0.00085 0.00000 0.00000 0.00000
0.00072 0.00000 0.00000 0.00000
0.00063 0.00000 0.00000 0.00000
0.00052 0.00000 0.00000 0.00000
0.00049 0.00000 0.00000 0.00000
0.00046 0.00000 0.00000 0.00000
0.00040 0.00000 0.00000 0.00000
0.00028 0.00000 0.00000 0.00000
0.00022 0.00000 0.00000 0.00000
0.00018 0.00000 0.00000 0.00000
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Table XXV
Factor structure of log P/D ratios in the model with noise and in the

data.

Eigenvalues of the covariance matrix of the log P/D ratios of the 25 Fama-French
portfolios as well as those obtained by simulating the model and adding some
noise to the result.

Eigenvalues of the covariance matrix of noisy log P/D ratios

Data Simulation mean 5th percentile 95th percentile
1.00000 1.00000 1.00000 1.00000
0.06041 0.04536 0.02144 0.08128
0.01669 0.01451 0.01323 0.01577
0.01169 0.01337 0.01234 0.01442
0.00627 0.01251 0.01160 0.01352
0.00522 0.01179 0.01095 0.01269
0.00494 0.01114 0.01046 0.01183
0.00318 0.01057 0.00989 0.01132
0.00245 0.01003 0.00936 0.01071
0.00238 0.00952 0.00877 0.01022
0.00215 0.00904 0.00842 0.00972
0.00168 0.00859 0.00800 0.00918
0.00137 0.00813 0.00757 0.00872
0.00101 0.00771 0.00712 0.00837
0.00094 0.00730 0.00677 0.00786
0.00085 0.00692 0.00639 0.00751
0.00072 0.00652 0.00603 0.00706
0.00063 0.00615 0.00567 0.00664
0.00052 0.00579 0.00533 0.00627
0.00049 0.00541 0.00496 0.00588
0.00046 0.00506 0.00464 0.00554
0.00040 0.00470 0.00429 0.00514
0.00028 0.00433 0.00388 0.00477
0.00022 0.00394 0.00350 0.00437
0.00018 0.00345 0.00295 0.00390
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C. Measurement Error

We do so by analyzing the degree of correlation between different measures for the same

fundamental macroeconomic quantities. For consumption growth, we use the estimates of

consumption growth derived from the continuously revised NIPA tables as well as those from

the real time database maintained by the Federal Reserve Bank of St. Louis (described in detail

by Croushore and Stark (2001)). Regressing these estimates against each other leads to the

results in table (XXVI). The R2 of 67% or about 2
3 indicates that the variance of measurement

noise in consumption growth is about half of the variance of actual consumption growth. We

thus simulate measured consumption growth as actual consumption growth plus iid noise with

half it’s realized variance in that simulation.

Table XXVI
Measurment error in consumption growth

Regression of the conventional revised measure of consumption growth ∆c on the
corresponding real time measure ∆cRT .

Intercept ∆cRT R2

∆c 0.0060 (0.0019) 0.838 (0.092) 67.0%

Similarly, we regress three measures of the real risk free rate on each other to estimate the

amount of measurement noise in it. We use the three measures considered by Marakani (2009),

i.e. estimates constructed with the use of lagged, realized and expected inflation. From the

results tabulated in table (XXVII), we see that the R2 of each of the regressions is quite low

with the average being under 33%. This indicates that the measurement noise in the reported

real risk free rate has about twice the variance of the underlying quantity. Hence, for the

simulations, we model the measured real risk free rate as the actual risk free rate plus iid noise

with twice it’s realized variance.
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Table XXVII
Measurement error in the real risk free rate

Regression of three measures of the real risk free rate on each other. The three
measures are computed using the lagged, realized and expected inflation. The
regressions are restricted to the post-1946 period as expected inflation data is
only available for it.

Regression of rlagged
f,t against rrealized

f,t

Coefficient Estimate (Std. Err.)
Intercept 0.0046 (0.0028)
rrealized
f,t 0.454 (0.106)
R2 23.6%

Regression of rlagged
f,t against rexpected

f,t

Coefficient Estimate (Std. Err.)
Intercept -0.0023 (0.0030)

rexpected
f,t 0.890 (0.145)

R2 38.6%

Regression of rrealized
f,t against rexpected

f,t

Coefficient Estimate (Std. Err.)
Intercept -0.0007 (0.0035)

rexpected
f,t 0.859 (0.169)

R2 30.4%

D. Type I error of Asset Pricing Tests with Respect to the Long

Run Risk Model

We now analyze the performance of tests of four different asset pricing restrictions of the long

run risk model in order to determine which is the most reasonable one to use in the analysis
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in this paper. The first two asset pricing restrictions that we consider are related to the one

analyzed by Ferson, Nallareddy, and Xie (2009).39 Of these, the first is40

E[ri,t+∆t − rf,t] +
1

2
Var[ri,t+∆t − rf,t] ≈βx̃λx̃ + β

σ̃2λσ̃2 +

2∑
i=1

βε̃λε̃

+

2∑
j=1

βw̃λw̃

(60)

where the returns ri,t are continuously compounded, x̃ and σ̃2 are the estimated values of xt

and σ2
t (note from the subscript that these are lagged values), and ε̃ and w̃ are the estimated

values of the innovations of these processes. x and σ2 are estimated in the same manner as by

Bansal, Yaron, and Kiku (2007) and Ferson, Nallareddy, and Xie (2009), i.e. by the use of the

following regressions

∆ct+∆t = α0 + α1zm,t + α2rf,t + σtηt+∆t

√
∆t (61)

x̃t = α0 − µ+ α1zm,t + α2rf,t (62)

x̃t+∆t = ρx̃t + ε̃t+∆t

√
∆t (63)

σ2
t η

2
t+∆t∆t = β0 + β1zm,t + β2rf,t + ωt+∆t (64)

σ̃2
t∆t = β0 + β1zm,t + β2rf,t (65)

σ̃2
t+∆t = νσ̃2

t + w̃t+∆t

√
∆t (66)

where zm,t is the log market P/D ratio (taken to be the log P/D ratio of the first asset in

the simulations) and ∆t is one year. The second asset pricing restriction that we consider

comes from considering only the innovations to the stochastic discount factor as in Ferson,

Nallareddy, and Xie (2009). This simplifies (60) to

E[ri,t+∆t − rf,t] +
1

2
Var[ri,t+∆t − rf,t] ≈

2∑
i=1

βε̃λε̃ +
2∑
j=1

βw̃λw̃ (67)

39Ferson, Nallareddy, and Xie (2009) use GMM with the Euler moment restrictions in the SDF
framework. We use the beta representation which is approximate but quite accurate when dealing with
continuously compounded returns.

40Note that we don’t need a β∆c term as there is no contemporaneous correlation between the dividend
growth and consumption growth innovations
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The third and fourth asset pricing restrictions that we consider are analogous but use the

two largest estimated log P/D ratio factors instead of the log market P/D ratio and the real

risk free rate as they should also span x and σ2. The principal idea behind this approach is

that given the null, they should be more accurately estimated in the presence of measurement

error since they are estimated using multiple assets. The asset pricing restriction analogous to

(60) is then given by

E[ri,t+∆t − rf,t] +
1

2
Var[ri,t+∆t − rf,t] ≈

2∑
i=1

βFiλFi +
2∑
j=1

βIFjλIFj (68)

where Fi and IFi are the ith principal components of the log P/D ratios of the assets and

their estimated innovations respectively (the latter are estimated by fitting the former to an

AR(1) process). The asset pricing restriction analogous to (67), which only uses the estimated

innovations, is then

E[ri,t+∆t − rf,t] +
1

2
Var[ri,t+∆t − rf,t] ≈

2∑
j=1

βIFjλIFj (69)

We examine whether the hypothesis that the factors being considered are useless is rejected

by the cross sectional regression methodology. This is done using the Wald test for the risk

premia of the factors with their covariance matrix being estimated in the standard manner

(see for eg., Shanken (1992) and Shanken and Zhou (2007)). The rejection frequencies for

each of these tests in 1000 simulations are reported in table (XXVIII). The results show that

the test of the asset pricing restriction involving the log P/D ratio factors (which also include

noise calibrated to fit the observed factor structure of log P/D ratios) and/or their innovations

display much greater power than those involving the estimated long run risk processes and

their innovations. Hence, we use the former in our analysis in this paper.
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Table XXVIII
Power of the two type of tests tested in the simulation

Rejection frequencies for the hypothesis that the λs of the relevant factors are
zero.

Hypothesis
Non-rejection rate

p=0.10 p=0.05 p=0.01
λx̃, λσ̃2 , λε̃, λw̃ = 0 14.9% 26.4% 48.8%

λε̃, λw̃ = 0 12.3% 24.0% 50.4%
λF1 , λF2 , λIF1 , λIF2 = 0 0 0.2% 0.4%

λIF1 , λIF2 = 0 0.4% 0.6% 1.5%

E. Conclusion

In this appendix, we simulate a 25 asset long run risk economy with parameters chosen so as

to match key economic and financial moments with those in U.S. economic and financial data.

We analyze the type I error of different asset pricing tests within this economy and find, when

realistic measurement noise is introduced into it, that tests using estimates of the long run

risk components derived from projections of consumption growth onto the log market price

dividend ratio and real risk free rate display high type I error while those estimating the same

components using the principal components of the log price dividend ratios of the assets do

not do so. This implies that the latter type of tests have a more desirable profile. Hence, we

use such tests in this paper.
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C. Out of Sample Tests

Table XXIX
Out of sample test for the relation between the first two principal

components and consumption growth volatility

Results of regressing real annual market dividend growth against lagged F a,os1

and F a,os2 , the out of sample estimates of the first and second log P/D factors.
The standard errors are Newey-West corrected with the number of lags required
estimated using the procedure of Newey and West (1994).

Regression of 24 quarter consumption growth volatility on
F a,os

1 and F a,os
2

Intercept F a,os
1 F a,os

2 R2

v24
t 0.171∗∗∗ (0.016) −0.0050∗∗∗ (0.0007) 0.0022 (0.0026) 74.1%

To check the robustness of the results, we estimated the rotation matrices relating the

log price dividend ratios of the portfolios to their first two principal components only using

data from 1943 to 1975 and used them to construct out of sample factors from 1975 to 2008.

We found that these estimated out of sample factors also track consumption growth volatility

and predict market dividend and real time consumption growth in a manner similar to that

documented for the in sample factors.

The results of regressing 24 quarter consumption growth volatility on the estimated out

of sample factors, summarized in table (XXIX), show that the relation found in the paper is

robust. Specifically, consumption growth volatility is found to be very significantly negatively

related to the first out of sample factor F a,os1 and to be unrelated to the second out of sample

factor F a,os2 .

The predictability of real time consumption and market dividend growth using the out

of sample factors are summarized in table (XXX). As can be seen, only the second factor is

relevant in predicting real time consumption growth and market dividend growth. The result

for the three year market dividend growth seems marginal but that is because the number of

data points is much smaller and the R2 of the regression is still found to be quite high.
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Table XXX
Out of sample test for the relation between the first two principal

components and future market dividend and real time consumption
growth

Results of regressing real annual market dividend growth and real time consump-
tion growth (∆cRT ) against lagged F a,os1 and F a,os2 , the out of sample estimates
of the first and second log P/D factors. The standard errors are Newey-West cor-
rected with the number of lags required estimated using the procedure of Newey
and West (1994). The regressions using the log market price dividend ratio use
data from 1976 onwards in order to be consistent with the others.

Regression of market dividend growth on F a,os
1 and F a,os

2

and the log market price dividend ratio
F a,os

1 F a,os
2 log(P/D)m R2

1 yr. Market div. growth
-0.0066 (0.0055) 0.0491∗∗∗ (0.0183) 20.8%

0.012 (0.036) 0.8%

3 yr. Market div. growth
0.0026 (0.0263) 0.0593 (0.0453) 13.4%

0.066 (0.138) 5.7%

Regression of real time annual consumption growth on lagged
values of F a,os

1 and F a,os
2 .

F a,os
1 F a,os

2 R2

∆cRTt+1 4.1× 10−4(0.0010) 0.0063∗∗ (0.0031) 13.9%
∆cRTt+2 5.5× 10−4(6.8× 10−4) 0.0045∗∗ (0.0016) 5.8%
∆cRTt+1 + ∆cRTt+2 7.6× 10−4(1.5× 10−3) 0.0123∗∗ (0.0050) 18.9%

A22



D. Robust Test Statistics
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Factor risk premium region identified by the p−value plot of the FAR statistic. 

Regions are color coded as cyan for p>0.1, purple for 0.05<p<0.1 and red for p<0.05
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Figure 11
p-value plot of the test of the joint hypothesis of factor pricing together with
(λIF−V ol , λIFX ) = (λ̂IF−V ol , λ̂IFX ) using the FAR statistic proposed by Kleibergen
(2009). λIF−V ol and λIFX are respectively the factor risk premia for the negative
volatility and consumption/dividend growth factors.

Since the excess returns of the 25 Fama-French portfolios formed on the basis of size and

book to market ratio have a strong factor structure, it is important to use robust test statistics

to eliminate the problem of useless factors being identified as useful (a problem forcefully

brought out by Kleibergen (2009) and Kleibergen (2010)). Hence, we use the robust test

statistics suggested by Kleibergen (2009) to ensure that the factors here are not useless.

We find that these robust test statistics reject the joint hypothesis that λIF−V ol = λIFX = 0

(non-rejection of the hypothesis would indicate that the pricing factors are useless) and do not

reject either the hypothesis of factor pricing or that of λIF−V ol = λ̂IF−V ol , λIFX = λ̂IFX for

many values of (λ̂IF−V ol , λ̂IFX ) including those estimated using the cross sectional regressions

(rejection of this would indicate that the model is rejected by the data). Figure 11 contains

the plot of the p-values of the FAR test statistic for many different values of (λ̂IF−V ol , λ̂IFX ).

This statistic tests the joint hypothesis of factor pricing and of λIF−V ol = λ̂IF−V ol , λFX = λ̂IFX .
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Factor risk premium region identified by the p−value plot of the JGLS statistic. 
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Factor risk premium region identified by GLS−LM statistic.

 Regions are color coded as cyan for p>0.1, purple for 0.05<p<0.1 and red for p<0.05
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Figure 12
p-value plot of the test of the hypothesis of factor pricing given (λIF−V ol , λIFX ) =

(λ̂IF−V ol , λ̂IFX ) using the JGLS and GLS-LM statistics proposed by Kleibergen
(2009). λIF−V ol and λIFX are respectively the factor risk premia for the negative
volatility and consumption/dividend growth factors.

It shows that the joint hypothesis is rejected at λ̂IF−V ol = λ̂IFX = 0 and also that it is not

rejected for many other values of λ̂IF−V ol and λ̂IFX including those in table VIII. Further, the

region identified by p > 0.1 excludes λIFX = 0 but not λIF−V ol = 0. This is consistent with

the findings using GMM which are analyzed in the next subsection.

The JGLS statistic which tests the hypothesis of factor pricing for a given value of λIF−V ol

and λIFX is plotted in figure 12. Since it tests a weaker hypothesis, it is not surprising that

it rejects fewer values of λIF−V ol and λIFX than the FAR statistic. When combined with

A24



the GLS-LM statistic, also plotted in figure 12, which tests the hypothesis that λIF−V ol =

λ̂IF−V ol , λFX = λ̂IFX given that factor pricing is correct, it gives very similar results to those

given by the FAR statistic.

Hence, we can conclude that the robust test statistics show that (21) cannot be rejected.

However, they, together with the findings made using GMM, do cast some doubt on the

significance of λIF−V ol .
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