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Finite hedging in field theory models of interest rates
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We use path integrals to calculate hedge parameters and efficacy of hedging in a quantum field theory
generalization of the Heath, Jarrow, and Mor{étobert Jarrow, David Heath, and Andrew Morton, Econo-
metrica60, 77 (1992] term structure model, which parsimoniously describes the evolution of imperfectly
correlated forward rates. We calculate, within the model specification, the effectiveness of hedging over finite
periods of time, and obtain the limiting case of instantaneous hedging. We use empirical estimates for the
parameters of the model to show that a low-dimensional hedge portfolio is quite effective.
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I. INTRODUCTION II. ASUMMARY OF THE FIELD THEORY MODEL

Let f(t,x) be the forward rates, that is, the interest at time

The first interest rate models were spot rate models thqtfor an instantaneous loan taken at some ti in the
had only one factor, which implied that the prices of all ¢ ..o

bondg were perfectly correlated. This was observed not to We briefly review Baaquie's field theory model of for-

be the case in practice, and led Heath and co-wolkdr®  \yarq rates presented in Ref&,7]. Baaquie proposed that
develop their famous modghenceforth called the HIM o eyolution of the forward rates, instead of being driven by
(Heath, Jarrow, and Mortgnmodel. The most important \hite noise processes as is the case for the HIM model, be

result of HIM is that, once the discounting factor is ﬁxed’replaced by considering the forward rates to be a two-
there exists a unique martingale measure for the forwardimensional quantum field.

rates. In the HIM model, the forward rate curve can be in- | the K-factor HIM model, the evolution of the forward
flqenced by more than one factor,. and this enabled bongias is fixed by
prices to have an imperfect correlation.

However, for aK-factor HIM model, this still meant that
the movements in the price & bonds would determine the af(t,x)
movements in the prices of all other bonds. This would en- at za(t,x)+2,l ai(LX)Wi(1), @)
able one to hedge any instrument wkhbonds within the
framework of this model, which again does not seem to be
the case in practice. In fact, if taken to be exact, a two-factowhere W,(t) are Gaussian white noises given by
HJM model implies that one can hedge a 30-yr treasury bon&[ W, (t)W;(t")]= & _jo(t—t").
with three-month and six-month bills—something that does The main extension that one makes in going over to a
look not reasonable. Hence, there has been much interest guantum field theory is to make the HIM white noidé
developing models which do not have this problem. Onedepend on future tim& as well as ort.
possibility is to use an infinite-factor HIM model as pointed Baaquie[6] proposed that the evolution equation for the
out by Cohen and Jarrof2], but it is well known that esti- forward rates to be given by
mating the parameters of even a two- or three-factor HIM
model from market data is very difficult. af (t,%)

These observations led Kenngd@}, Santa-Clara and Sor- !
nette[4], and Goldsteif5] to come up with random field
models which allowed imperfect correlations across all the

bonds. Baaquig6,7] proceeded with this development by Both f(t,x) andA(t,x) are two-dimensional quantum fieldls,

putting all these models into the framework of quantum fieldand that the fieldA has the freéGaussiap free-field action
theory[8] that allows for the use of a large body of theoret- functional[6]

ical and computational methods developed in physics to be
applied to this problem. The estimation of parameters for
different field theory models has been discussed in Baaquie SA]= - 1 detJ'”TFRdX
and Srikant[9] and is seen to be more effective than the 2 )¢ t
estimation of parameters in the HIM model.
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2While we can put in many field#;, as in theK-factor HIM

*Electronic address: phybeb@nus.edu.sg model, it was shown by Baaquie and Srikd®{ that the extra

"Electronic address: srikant@srikant.org generality brought into the process due to the extra argument

in this paper, we only use zero-coupon bonds, hence all refermakes one field sufficient for explaining most of the important fea-
ences to bonds are to zero-coupon bonds. tures of the market data.
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Z[j]=E

with Neumann boundary conditions imposedxatt and x The objective in this paper is to investigate how portfolios
=t+ Tgr. This action has the partition function, obtained by of bonds behave in field theory models of the interest rates.
performing the functional integration over the quantum fieldFor the objectives of this paper, we define risk of an instru-
A(t,x), given by ment to be the standard deviation, or variance, of its final
value. This definition of risk is valid for both finite and in-
J"" fHTFR . stantaneous hedgings. Hence, when we hedge a certain in-
ex dt A(t,x)j(t,x) .
p[ to t strument, we try to create a portfolio of the hedged and hedg-
- ing instruments which minimize the overall variance of the
. * FR . A portfolio. A perfectly hedged portfolio in this formulation is
zf DA exp{ ftodtJ't A(t,x)](t,x)}eq ] the one with zero variance.
In the case of a&K-factor HIM model, perfect hedging
_ 1 (= U TeR . (i.e., a zero variance portfoliois achievable once any
—exXp 3 fto dtﬁ dx dxj(t,x) K-independent hedging instrument is used. However, the dif-
ficulties introduced by the infinite number of factors in the
field theory models have resulted in their being very little
literature on this important subject, a notable exception being
the measure valued trading strategy developed bykBJ6a-
with banov, and Runggaldi¢d3].
We will be primarily concerned with hedgir(the fluctua-
D(6,0";Ter) tions of) zero-coupon treasury bonds, and we will form

hedged portfolios that will include either other bonds with
different maturities or futures contracts on bonds. The price

XD(x—t,x’—t)j(t,x’)} 4

coshu(Ter—|0— 0']) +coshu(Ter—(6+0"))

=p

2 sinhuTegr of a zero-coupon bond maturing at tinfeat some timet
. . <Tis gi
=D(0',0;Tgr) (symmetric function of6,0’), (5) T is given by
T
where §=x—t and §’=x'—t. We can calculate expecta- P(t'T):exp{ _f dx f(t,x)]_ (6)
tions and correlations using this partition function. Note that t
due to the Neumann boundary conditions, the propadator )
in fact, depends only on the differenge-t. A futures contract onP(t,T) matures at some timg:
wWhen M_>0, this model should go over to the HIM <T, and |tS Value at some '[ImE<t,: iS the futures price
model, which has been discussed in Rés9). F(t,tg, T) given by[6]
The field theory approach preserves the closed form solu-
tions for hedge parameters and futures contracts. Note the F(tte vT):E(t,tF>[P(t'T)] @)
(original) finite-factor HIM model cannot accommodate an
empirically determined propagator, since it is automatically =F(t,te, T)expQ At,tg,T)}. (8)

fixed once the HIM volatility functions are specified.

A detailed empirical study of the field theory model—and The forward price is given by
the empirical estimation of parameters of the model—was
obtained from the forward rate curve by Baaquie and Srikant P(t,T)
[9]. The functiono for the Gaussian model has been esti- F(tte, T)= ERRS) 9
mated from market data, and is shown in Fig. 2 in Ref. F
The results for the empiricalactua) propagator are found Tt
from the data and graphed in Figs. 3 and 4 of Ref; the =exp[ —f daf(t,e)} (10)
implied propagator for the empirically fitted value ef te—t
=0.06 yr ! is shown in Fig. 6 in Ref[9].

and thedeterministicquantity Q At,tg,T) is given by[6]

Il. HEDGING N e et
All forms of financial instruments are subject to risks due Q At te, T)=— 2, f dtf dé oi(t,0)
to the unpredictable behavior of the financial markets. There =1t 0
are many ways of defining riskl2]. Hedging is a general Tt
term for the procedure ofeducing and if possible com- Xf do’ oi(t,0"). (11
pletely eliminating, the risks to the value of a financial et

!nstrument_—due to its rgndom quctuatlops—by including it A typical hedged portfolio that is formed out of bonds
in a portfolio together with other related instruments. with varving maturitiesT. is given b
For bonds, the main risks are changes in interest rates and ying 1159 y

the risk of default. In this paper, we are only dealing with N
default-free bonds so that the only source of risk is the (t)=P(t THZ AP(L,T) (12)
change in interest rates. R = T
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whereas a hedged portfolio using futures contracts has theonsider its variance to be a suitable measure of the fluctua-
form tions in its value. Hence, the weights of the boii{s,,T;)
with maturitiesT;, namely,A;, are chosen so that the vari-

" ance of the portfolidI(t, ) (at future timet, ) is @ minimum.

()= P(t’T)Jerl AiALLE,T)). (13 We hence need to compute the variance
In this paper the weightd; of the hedged portfolio will va II(t, ) ]= E[11%(t,) ] - {E[T1(t,) ]}*
be determined from the field theory model for the forward N
rates. =E[P(t, T)]+22 AE[P(t, T)P(t, T)]
Instantaneous hedging refers to a process where the port- =1
folio IT is continuously rebalanced. In R¢fl5] we carried (15)
out a detailed analysis of the instantaneous hedging of a
bond based on the field theory model, and to do so one N
requires only the propagator and the evolution equations for +'Z AAE[P(t, , TH)P(L, ,T))]
the forward rates. In constrast, we will see that for the case of hi=1
finite hegding the detailed structure of the path integral be- —{E[TI(t,)]}2. (16)

comes important for the derivations.

In practice, continuous hedging is not carried out due toThe coefficients\; are fixed by mininimizing vadl(t,)].
transaction costs. We hence consider finite time hedging To be able to optimally hedge a boR{t,,T) with other
since it is important in practice. Hedging over a finite time bonds(in the sense of having a minimal resulting variance
horizont, means creating a portfolio gtnamely,II(t), and  we need to evaluate the covariance between the values of
then letting this portfolio evolve over the time interValt, |  bonds of different maturities at timte=t, . Since the initial
without any further rebalancing. We will take the limit of conditions are given dt=t,, we make the following simpli-
infinitesimal time and recover the results of instantaneousications. Making use of Eq9), we have
hedging from the finite case.

Finite time hedging provides a measure on how frequently P(t, ,T)=F(to,t, , T)e i, 17
the portfolio needs to be rebalanced, and hence provides a

way of optimizing between gains obtained through hedging (T B
against expenses incurred due to transaction costs. Gi= t, dX (L, %)= F(to., x)]. (18
IV. FINITE TIME HEDGING In other words,
We only consider the hedging of bonds with other bonds P(t,,T) P(t, . T))P(tg,ty)
as the calculations for minimizing variance can be done ex- M e L Ty T P(t. T
. . . (to,t* ’ |) (t01 |)
actly. We will not do hedging of bonds with futures—even (19)

though this can also be solved exactly by minimizing the

variance—as it does not add much extra insight for finiteNote that the forward ratE(ty,t, ,T;) is an initial condition

time. To see this, consider hedging with a futures contract othat is fixed by market data att,.

a zero-coupon bond of duratidnthat matures at the same as A typical correlator of bonds can be written as

the hedging horizon. This gives exactly the same result as

that obtained by hedging with a bond of the same matdrity E[P(t, , T)]=F(to,t, , T)E[e” 1], (20)

Therefore, we gain nothing by carrying out that calculation.
We fix some notation. Let us denote the initial timetgy

the hedging horizon by, , and the maturities of the bonds E[e C]

used for hedging by; . We would like to create a portfolio

today to hedge a treasury bond, fft,,T). f+

wnere

dG,e GE

— o0

We consider the hedging of one bond maturing atith
N other bonds maturing af;, 1<i<N. If one of theT,
=T, then the solution is trivial since it is the same bond. The fﬂo dp

T
5{ f dx[f(t*,x)—f(to,x)]—Gi”

ty

hedging is then just to shofsell) the same bond giving us a
zero portfolio with obviously zero variance. Since this solu-

o 27T

f dGl e_GiE

T
expip“t dx f(t, ,x)

tion is uninteresting, we assume thigt= T V i.
Recall from Eq.(12) that a hedged portfolio is given by —f(te.¥)]=Gjp |- (21)
N
_ _ _ In general, to calculate the covariance between bonds of
M(to)= P(to,T)+Zl AiP(to, Ti). (14) varying maturities, we first find the joint probability density

function forN bonds at the hedging horizon. We calculate the
Note that the portfolidI(t), for t>ty, is not a log nor- joint distribution of the quantities which represent the loga-
mal (Guassiah random variable; however, we continue to rithms of the ratios of the final value of the bonds to the
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value at the initial time. The following calculation proceeds

PHYSICAL REVIEW E 69, 036130 (2004

Having obtained the joint distribution @, , we can find

efficiently because of the use of path integral techniqueshe covariance of the final bond prices by tabulating the ex-

which are very useful for such problems.
Consider

]

N
[[ H dx[f(t, %)~ f(tg,x)]— GH
N
dp;
11;[1 Jz—w’f DA e3Al

X ex iE pj(f dtf dx a(t,x)
=1 to e

ty T
+f dtf JdXU(t,x)A(t,x)—Gj>
t0 t*

(22

which, on applying Eq(4), becomes

ij|

t* T] Th
xf dtf dxf dx o(t,x)D(x—t,x’' —t)o(t,x")
0 ty ty

< b T
+|;1 pj(fo dtft*dm(t,x)—ej)].

(23

pectations of each of the bonds and the expectation of their
products. The final bond price in terms & is given by
P(t, ,T;)=F(to.t, ,T;)e Gi. Hence, the expectation of this
quantity is given by

E[P(t, . T)]=F(to.t, ,Ti)f DG e %ied®)=F(to,t, ., T,
(29
as expected, since the expectation of the future bond price is
the future’s price.
The expectation of the products of the prices of two bonds

is given by

E[P(t, . T)P(t, . T)]=F(to,t, , TH)F(to,t, ,T;)
xf DG e ®~Cied®l. (30
On evaluation, this gives the result
E[P(t, . T)P(t, , Tj)]

=F(to,t, , Ti) Fltg,t, , T; )exp{f dtf dx
0

XJ jdX’(r(t,X)D(X—t,X'—t)o-(t,x')].
t*

Performing the Gaussian integrations, we obtain the joint

probability distribution given by

N N

> 2

(Gj—my)
j=1k=1

1
(ZW)N’Z(detB)l’Zexp[ >

X Bj_kl(Gk_ mk)} , (24)

whereB is the matrix whose elemenB;; are given by
t* Ti Tl

B'J:f dtf dxf dx’ o(t,x)D(x—t,x" —t)o(t,x")
to G ty

(29)

andm; is given by

e Ti
mizf dtf dx a(t,x).
t0 t*

Hence, the quantitie§; follow a multivariate Gaussian dis-
tribution with covariance matri8;; and meanm; . Define

(26)

N
J DGE(Zw)’N’Z(detB)’l’ZjHl Jf dG;, (27

N N
> 2 (G—m)B (G —my. (29

j=1k=1

I\JII—\

SG]=-

(31

The covariance between the priceB(t, ,T;) and
P(t, ,T;) is given by
M =E[P(t, ,T)P(

L T]—E[P(t, , T IE[P(L, , Ty,

(32
and hence
M|]:]:(t01t* vTi)]:(t01t* 1T])
x[exr{f dtf dxf dx’ o(t,x)
0 ty ty
XD(x—t,x’—t)o(t,x’)) —1}, (33

and the covariance between the hedged bond of matlrity
and the hedging bonds of maturily is given by

Li=Fto,t, , T) Fto,t, , T

exp( ft dtf dxf dx’ o(t,x)

XD(x—t,x’ —t)c(t,x')) - 1} .

(34)

036130-4



FINITE HEDGING IN FIELD THEORY MODELS C. .. PHYSICAL REVIEW E 69, 036130 (2004

Minimization of the residual variance of the hedged port-  e-cce12
folio is straightforward, and the hedge ratios are found to be
given by o.000i0 |

N
0.00008 |-
Ai:—;l LMt (35

We hence have the hedged portfolio given by

Résidual variance

0.00004

N
H(tO):P(t01T)+i§1 AiP(to,Ti) (36) 0,00003 I i
with the portfolio’s minimizedesidual variancebeing given . 3 : w,;u@w;m ¢ ? e

by
FIG. 1. Residual variance when a 5-yr bond is hedged with one
vafIl(t,)]=vafP(t, ,T)]-L™™M L. (37)  other bond, with the best fit of the constant rigidity field theory
model. Time horizon for hedging of one year. Residual variance
The residual variance enables the effectiveness of the-vafP(1yr,5yr)]—L%/M,;.
hedged portfolio to be evaluated. In the following section,
residual variance is used for studying the hedged portfolio$ep|aced by integrals ovef. The bond to be hedged was
that include bonds of different maturities. chosen to be the 5-yr-zero-coupon bond and the time horizon
One important difference between instantaneous hedginq was chosen to be one year.
and finite time hedging is that in the latter case the result’ Note that the errors involved largely cancel themselves
depends on the value of the drift velocity For finite time  qut, and hence the residual variances obtained are still quite
hedging, it is natural that should appear. The reason is that gccurate. The parabolic nature of the residual variance as
if one is not hedging continuously, then the portfolio is ex-shown in Fig. 1 is because is constant; this graph appeals
posed to market risks, and therefore risk premiums defined ify our economic intuition which suggests that the correlation
terms ofa appear in the formulas for finite time hedging.  petween forward rates decreases monotonically as the dis-
In the calculation above we used the risk-neutral deift  tance between them increases.
obtained by using the money market as fliéscounting A more complicated dependence @rand maturity would
numeraire. However, the market does not follow the risk-produce residual variances that do not deviate monotonically
neutral measure and It WOUId be better to use a Valuel(for as the maturities Of the under|ying bonds and the hedge port-
estimated from the market for any practical use of thisfglig increase.
method. For the case of instantaneous hedging, the difference The residual variance and hedge ratio of the hedged port-
between the risk-neutral and market drift is irrelevant, sincgqglio for the hedging a bond using another bond—using the
in the very short term only the stochastic term dominatesggnstant rigidity field theory model—is shown in Figs. 1 and
making the drift term itself inconsequential. This, of course,2. The residual variance of the hedged portfolio using two
is not the case for the finite time case where the drift beonds for hedging is shown in Fig. 3.
comes importantit is not difficult to see that the importance  The results for the hedging of one bond using the empiri-
of the drift grows with the time horizon

V. SEMIEMPIRICAL RESULTS FOR FINITE
TIME HEDGING 2l

IS
T
)

We discuss the empirical results for hedging of a bond
with other bonds for both the best fit for the constant rigidity
field theory model as well as for the fully empirical propa-
gator. Reduction of residual variance to zero is not feasible in %
practice; the best one can do is to decide the level of risk one®
is prepared to live with, and then include as many hedging .. |
instruments as is required to achieve this level of risk.

We take the current forward rate curve to be flat and equal -} ]
to 5% throughout. The initial forward rate curve does not
affect any of the qualitative results. The results can also be ™= ; 5 p P . ; s
easily extended to other bonds. uirand

The calculation ot. andM were carried out using simple  F|G. 2. Hedge ratio when a 5-yr bond is hedged with another
trapezoidal integration as the data is not exceptionally accusond with the best fit of the constant rigidity field theory model.
rate in the first place. Volatilityr was assumed to be purely Time horizon of hedging of one year. Hedge ratib,=
a function of §=x—t so that all the integrals ovet were ~ —L3/My;.

ratio
o
T
|

°
)
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res1dusl variance contribute to the variance of the bonds reduces as the time
horizon increases. This is very clear if the maturity of the
bond is close to the hedging horizon, since the volatility of
bonds reduces quickly as the time to maturity approaches.
Apart from this reduction, the results look very similar to the
infinitesimal case. This is probably due to the fact that the
volatility is quite small so the nonlinear effects in the cova-
riance matrixM;; given in Eq.(33) are not apparent.
If very long time horizongten years or moneand long

term bonds are considered, the results will probably be quite
Moy ofHedgng Bond es) P different.

9.00012
0.00010
0.00008
0. 00006
0.00004
0.00002

0
~0.00002

FIG. 3. Residual variance when a 5-yr bond is hedged with two
other bonds with the best fit of the constant rigidity field theory VI. INSTANTANEOUS HEDGING

model. Time horizon of hedging of one year. In instantaneous hedging, we consider a hedging portfolio

yvhich is rebalanced continuously in time. Hence, we are
nly concerned with the instantaneous variance of the port-
lio. To find the weights of the hedged portfolio, we mini-

mize the variance ofllI(ty)/dt. To obtain the results for

pstantaneous hedging, note that fgr=t,+ € we have

cal propagator for the hedged portfolio, namely, its residua
variance and hedge ratio gives results almost identical to th
one obtained using the field theory propagator with the be
fit for the rigidity parameteru=0.06 yr 1. As is to be ex- .
pected, the empirical rather than the field theory propagato'
gives a better hedged portfolio.
Note the residual variance when two bonds are used to ar{ dH(tO)}:ival{H(t +e)] (38)
form the hedged portfolio has instabilities when the maturity dt € 0 ’
of the two bonds being used for hedging have nearby matu-
rities, and is an important result that also emerges for thsince the value ofl(ty) is deterministic. BothM;; andL;
case of instantaneous hedgifith]. The field theory model computed for finite time hedging yield—after appropriate
shows that if one was to form the Greeks for this hedgedcaling bye—a finite limit on takinge— 0.
portfolio, the instabilities that have surfaced in the field We summarize in Table | the results for instantaneous
theory model would lead to large coefficients, and could béedging both for a hedged portfolio composed out of zero-
of some significance in choosing the optimum maturity forcoupon bonds, and out of futures contracts. We use the no-
the bonds being used for hedging. tation P(ty,T;)=P; and F(tg,te, T;)=F; . The result for in-
One interesting result of finite time hedging is that thestantaneous hedging for a portfolio composed out of bonds
actual residual variance of the hedged portfolio when hedgwith varying maturities follows directly from taking the limit
ing over a finite time horizon is less than what one naivelyof the finite hedging case.
extrapolates the infinitesimal hedging result. This seems to A detailed analysis of instantaneous hedging using the
be due to the fact that the domain of the forward rates thafield theory model for the forward rates is given in Réf5].

TABLE |. Residual variance and hedging weights for hedged portfolios of a zero coupon bond for
instantaneous hedging using other bonds and future contracts.

Residual variance of portfolio
dIl(to)

V=Var at

Portfolio Il WeightsA;

P 0

—ty —ty
Vy=P? f de f do’' a(6)a(6)D(6,0' ;TeR)
0 0

N V=V,—L™M~IL N
P+E AiPi —to i—to _z LJMJTl
i=1 Li:PPi d0 d0’o’(0)0'(0')D(0,0',TFR) j=1
0 0
i~ i~to
MI]:PIP] de d0’0(9)0'(0’)D(0,0’,T,:R)
0 0
N V=V,—L™M 1L N
PeY A “2
= L=PF de do'a(0)D(6,0";Ter)a(0') =
t 0

F-t,

Ti—tg Ti—tg
t

tr=to Flo
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The most important result is that one achieves a large reducthe field theory model calibrated to market data to show that
tion in the residual variance by shortening two futures con-a low-dimensional basis provides a reasonably good approxi-
tracts that mature before and after the maturity of the bondanation within the framework of this model.
being hedged. If one includes three or more futures contracts, The results of this analysis show that field theory models
there is relatively negligible gains in the residual variance. effectively address the theoretical dilemmas of finite-factor
term structure models, and offer a practical alternative to
VIl. CONCLUSION finite-factor models.

We have shown that the field theory model offers tech-
niques to calculate hedge parameters for fixed income de-
rivatives and provides a framework to answer questions con- We would like to thank Professor M. Warachka for many
cerning the number and maturity of bonds to include in ainsightful and illuminating discussions. We would also like
hedge portfolio. We have also seen how the field theoryto thank Professor Jean Philippe-Bouchaud and Science and
model can be used to estimate hedge parameters for both tRéance for kindly providing us with the data for the semi-
finite time as well for the instantaneous case. We have useempirical section of the study.
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